

Python Programming:

Basics to Advanced Concepts

Advanced Programming Workshop

Chris Simber

Assistant Professor, Computer Science

Rowan College at Burlington County

Cataloging Data

Names: Simber, Chris, author.

Title: Python Programming: Basics to Advanced Concepts

Advanced Programming Workshop

Subjects: Python (Computer Program Language)

Chris Simber

Assistant Professor of Computer Science

Rowan College at Burlington County

Author contact: csimber@RCBC.edu

This work is licensed under CC BY-ND 4.0. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nd/4.0/

mailto:csimber@RCBC.edu

Introduction

This book is intended for use in a programming course in Python for

students who are familiar with computer programming in another language

such as C++ or Java. It follows the flow of a standard text for a programming

language highlighting Python specifics and differences. This means that it

moves quickly from variables to multi-file, multi-window advanced

programming in a how to implement things they know in Python perspective.

The goal is to provide students with the differences that can be expected

when programming in Python.

The text is designed for instruction in a course in which students develop a

semester-long project in the language, but can be used for courses that

require multiple programs as well. The classroom format for a semester-long

project is lecture followed by a collaborative or team workshop. Projects have

six milestones for design and development with documentation submissions

and presentations of running software. Additional project instructions are

available from the author.

The examples within the chapters follow the PEP 8 Style Guide for Python

Code and reinforce the material introduced while building on previous

material covered. They provide the information necessary to meet each

milestone in the project chronologically. Again, a comprehensive, semester-

long project is in view. For this reason, there are no end-of-chapter reviews,

summaries, or questions. However, the chapter exercises are numbered for

clarity using a shaded box, and can be used for assignment purposes.

Beginning in Chapter 5, the examples build the Data Analysis Project in

Appendix C, however all projects have similar requirements. There are

accompanying slides for instruction.

The Python version in use at the time of this writing is 3.9.0. The modules

utilized include Tkinter, random, tkFileDialog, filedialog, webbrowser,

numpy, pyplot, animation, PhotoImage, matplotlib, and winsound.

The Integrated Development Environment (IDE) selected is IDLE which

accompanies Python when downloaded. IDLE’s interface differs from most

IDEs and provides students with a new experience in development and

debugging that is not overtaxing yet instructional. IDLE has been selected

intentionally for this purpose.

Instructions for obtaining and installing Python with IDLE are provided in

Appendix A. Instructions for using the PIP installer which is included in

Python are provided in Appendix B. Links to the Python web site, Python

Tutorials, and the PEP 8 Style Guide are included in Appendix D.

Acknowledgements:

I would like to thank the following students for their technical and editorial

review and suggestions. During a busy semester they found the time to

provide valuable recommendations and editing contributions.

Christian Larcomb

Elizabeth Meyeroff

New in this edition:

Chapter 7 – added window centering, bringing windows to the front, and ending

programs when windows are closed

Chapter 12 – an option list example 12.2A was added that uses “trace”

Chapter 13 - the tkcalendar module was added

Chapter 14 – the new Python format specifier was added

Contents

Chapter 1 Python Programming & Process 1

Chapter 2 Python Language Specifics 9

Chapter 3 Getting Started in Python 17

Chapter 4 Decisions, Logic, Loops, and Functions 23

Chapter 5 GUI Design & Development 35

Chapter 6 File Handling 49

Chapter 7 Multiple Windows & Design 59

Chapter 8 Data File Design & Data Handling 69

Chapter 9 Strings, Lists, and Tuples 73

Chapter 10 Remove, Modify, or Hide Controls 79

Chapter 11 Main Interface GUI 83

Chapter 12 Menus and Button Groups 87

Chapter 13 Date and Time 97

Chapter 14 Displaying Data 101

Chapter 15 Python Modules 115

Chapter 16 File Dialogs, HTML, and Animation 121

Appendix A Installing Python with IDLE 131

Appendix B the PIP Installer 133

Appendix C Data Analysis Project 135

Appendix D Resource Links 141

Index

“Five minutes of design time, will save hours of programming” –

Chris Simber

1

Chapter 1 Python Programming & Process

Chapter 1

Python Programming & Process

Python is an interpreted, high-level, general-purpose language. It was created by

Guido van Rossum and introduced in 1991, and emphasizes code readability and

is similar in many respects to pseudo-code. The name Python comes from the

famous British comedy Monty Python’s Flying Circus.

Most programmers are familiar with compilers which translate high-level

languages into machine language. Python uses an interpreter.

An interpreter translates and executes instructions in a high-level

language. It interprets one instruction at a time and executes it. There is

no separate machine language program.

Note: There are applications such as PyInstaller that package Python

programs into stand-alone executables.

From a programmer standpoint, the process of interpret-execute removes the

compilation step of some other languages that performs error and type checking.

Integrated Development Environments for Python have evolved to help in this

regard, and provide comparable support.

Interpreted languages tend to be slower than direct native machine code, and can

be reverse engineered more easily, so their use should be restricted to areas

where this is not an issue.

2

Chapter 1 Python Programming & Process

A second Language

It is recommended that programmers be proficient in one language, familiar with

others, and not be intimidated by any. Programming trends warrant a broader

knowledge in computing than a single language or development environment

provides.

Programming Trends

– Server side (cloud-like) 1980s

– Stand-alone executables 1980s thru present

• dramatic increase in available software

• evolution of interfaces

– Web applications 1990s thru present

– Cloud applications (server side) 1993 thru present

– All of the above Today

The extensive use of the Graphical User Interface (GUI) and network and

internet utilization including internet interfaces and transactions increase the

need for multi-language programmers. Maintaining existing programs in various

languages is a major area of the computer programming industry as well. For

example, FORTRAN has been used in math and science, COBOL for business

and finance, C and C++ in many areas, Java in web applications, and so on. At

the time of this writing there were approximately 250 programming languages in

use. Some of these have been used extensively, others not so much. Each has

benefits and limitations as well as a following, proponents, and detractors.

Given what you know about programming: variables, functions/methods, classes

and objects, logic, flow of control, algorithm development, etc., adapting to

Python should not be difficult.

As an example, a simple output statement in C++, Java, and Python. Note the

similarities.

 C++ cout << “This program computes …” << endl;

 Java System.out.println(“This program computes…”);

 Python print(‘This program computes …\n')

3

Chapter 1 Python Programming & Process

Here are a few examples of Python code with comments for explanation.

requesting and obtaining input, and storing it in a float variable

tempF = float(input('Enter the temperature in Fahrenheit: '))

computation in Python raising windSpeed to the 0.16 power using “**”

wind_chill = 35.74 + (0.6215 * tempF) - (35.75 * (wind_speed**0.16)) + \

 0.4275 * tempF * (wind_speed**0.16)

displaying formatted output in Python

print('The wind chill factor is ', + format(str(wind_chill, '.2f')))

There are some key differences in the Python lines above from other languages.

Variables are not declared by type, comments begin with the pound sign “#”

(octothorp), and the use of the backslash at the end of the line computing

wind_chill is a line break in the code that does not affect execution. These and

other differences will be described in detail and highlighted throughout the text.

The Agile Development Process and Design and Development

As with any language, increasing design time shortens development, testing, and

debugging time. The design tools typically utilized in other languages can be

used with Python as well: design documentation, pseudo-code, Story Boards,

IPO (Input Processing Output) documents, flowcharts, Unified Modeling

Language (UML) diagrams, etc. It is often said that “Five minutes of design time

can save hours of development and debugging.” This is a true statement.

Development cycle and IDE tools can be used as well including: text editors,

watch windows, error alerts, breakpoints, comments, and output statements.

Tools for software teams and software project managers are commonly used in

industry to plan and measure project progress, and to provide visibility into the

design, schedule status, cost, and quality of the code. The Agile Development

Process is a popular method in use today. Agile processes go by various names,

but all are iterative and incremental software methodologies that lend

themselves to Python development.

4

Chapter 1 Python Programming & Process

The most popular agile methodologies include:

• Scrum – regular meetings, periodic cycles called sprints

• Crystal - methodology, techniques, and policies

• Dynamic Systems Development Method (DSDM)

• Extreme Programming (XP)

• Lean Development

• Feature-Driven Development (FDD)

The Scrum methodology is further explained in terms of sprints to align with the

milestone tempo of this text for project design and development.

A key component of the Agile Development Process is a sprint. Sprint meetings

occur periodically (usually weekly or twice monthly) and include a review and

planning event. Tasks completed from the previous sprint plan are reviewed,

and completed work is demonstrated to stakeholders for feedback and approval.

The tasks that were not completed from the previous sprint plan is reviewed

with a course of action (re-plan). The scope of work that will be completed

during the next sprint cycle is planned, and engineers are assigned to the tasks.

Agile Development Cycle

Requirements

Prior to the planning and design phase, a complete understanding of what the

program is supposed to do is needed. How it will do what it is supposed to do

will be determined as the design phase is completed during the software

development phase. Requirements decomposition is the act of discerning in

5

Chapter 1 Python Programming & Process

detail from the requirements what the program is to accomplish. This process

also assists in decomposing the project into manageable “chunks” in terms of

schedule and team assignment for development.

Design

As the requirements are decomposed and documented, the design phase begins,

and the break-down of required tasks and logical steps in the program are

developed. Design is a very important part of the software development cycle

because of the cost escalation of changes and bug fixes further on in the process.

This is highlighted in the chart below from the IBM Systems Sciences Institute.

Cost Increase of Fixing Errors by Phase

Software engineering tools that assist in this process include pseudo-code, and

flowcharts that graphically show the order of operations. Consider a program to

read data from a file, compute a value, and display the results. The pseudo-code

for the solution might be:

Step 1. Start the program

Step 2. Read data from the file

Step 3. Compute the value

Step 4. Display the output

Step 5. End of file reached?

– If No, go back to Step 2

– If Yes, go to Step 6

Step 6. End the program

6

Chapter 1 Python Programming & Process

The pseudo-code steps above do not include opening and closing the file. They

might be considered obvious steps in the process. The level of detail is subjective.

Rather than use a document, pseudo-code for portions of the program could be

typed into the text editor of the IDE as comments. Later, they can either be

replaced with actual code or kept in some form as a comment to the code.

Since we think in pictures and not text, a flowchart provides a faster and clearer

depiction of the algorithm and logic. If we are simply ensuring that we have a

robust algorithm and haven’t missed any steps, then flowcharts can be sketched

quickly on a piece of paper and discarded after the program is testing correctly.

If the flowchart will be used later, or is part of the deliverable product, then a

flowcharting application such as LucidChart would be used. It is common for

larger organizations to divide the design and development tasks into teams or to

subcontract the software development out-of-house. In these instances,

flowcharts are often required to be delivered to the development team or

subcontractor together with specific requirements for the code. A flowchart for

the example algorithm is shown below.

File Reading Flowchart

7

Chapter 1 Python Programming & Process

Flowcharts can ensure that steps in the process haven’t been overlooked and that

there is a complete understanding of the operational flow of the program.

Many software engineers use a combination of these tools. Pseudo-code may be

used for a high-level description of the program or a program area, and a

flowchart might be used for more complex sections. Either way, the goal is to

have a comprehensive understanding of the requirements at every level to

ensure that the final product meets the requirements.

Development

Once a design is complete (or nearly complete since some aspects of the solution

may not be knowable during design), the development phase begins. Often the

development of a program is divided among multiple programmers and requires

collaboration and regular discussion to ensure a cohesive solution. To enable

multiple people to work on the same program at the same time, a Configuration

Management System (CMS) is used with a source code repository that stores all

of the programs files.

Software Development Collaboration

Programmers access this repository to obtain a copy of a file and add

functionality or make modifications to the code. The code is written in the

copied file, and this changed file is tested with the other files in the source code

8

Chapter 1 Python Programming & Process

repository. After testing, the modified file is placed into the repository and is

used by all of the other programmers in place of the original file. The original

file is retained by the configuration management tool as a version control

mechanism. CMS tools provide for collaborative development, and version

control of the files and the overall project, and many industries and clients

require their use.

Many configuration management systems have integrated suites that include:

scheduling, task assignment, defect reporting, and issue tracking systems. In

addition, tools for software teams and software project managers are commonly

used in industry to plan and measure project progress, and to provide visibility

into the design, schedule status, cost, and quality of the code.

Test and Integration

The next phase in the software development life-cycle is integration and testing.

In the test phase, the programmer runs the program to ensure that there are no

errors in the code, and that it performs correctly (meets the requirements). The

two types of errors that are looked for during the test phase are syntax errors and

logic errors.

Syntax errors - violations of language specific rules like indentation and

punctuation. The compiler or interpreter will halt compilation or execution.

Logic errors are errors in the algorithm or the way that the algorithm was written

by the programmer.

If the code is part of a larger project, it must be integrated into the overall project

and tested again with the complete program. The configuration management

system provides this capability as well.

Delivery and Maintenance

The final phase of the software development life-cycle is the delivery and

maintenance phase. The program is delivered to the client or customer and a

period of maintaining the program begins which includes updates with added

functionality, or patches that fix errors or security issues found after delivery.

9

Chapter 2 Python Language Specifics

Chapter 2

Python Language Specifics

Comments

As mentioned previously, single-line comments begin with the pound sign in

Python and will be ignored by the interpreter. The IDLE IDE used in this text

will color code comments in red font as the default. For multiline comments,

either three single or three double quotes at the start and end of the comment are

used.

 # This is a single line comment in Python

 “””

This is a multiline comment in Python

using three sets of double quotes

“””

Displaying Output

The print function in Python displays output to the IDLE shell. The argument

passed to the print function contains the item or items to display along with any

format specifiers. Single or double quotes can be used with string arguments,

and the print function automatically adds a line feed in the output. The plus sign

and comma are used for multiple arguments depending on the element types.

10

Chapter 2 Python Language Specifics

In the examples below, note the absence of a semicolon as an end of line marker

(Python does not use them), and that multiple arguments can be passed to the

print function separated by commas.

The format function is used to format output. Two arguments are passed to the

function: the numeric value to be formatted and the format specification. The

format function returns a string holding the formatted number that is then

passed to the print function.

Multiple items passed as arguments to print are separated by commas. They are

displayed in the order they are passed and are automatically separated in the

output by a space.

To suppress the spaces that are automatically added, pass the argument sep= ‘ ‘ to

the function. This can also be used to add a specific separator.

To suppress the line feed automatically added, pass the end= ‘ ‘ to the function.

The output from these three print statements is: No line feed for these three lines.

The automatic line feed added by the print function is omitted.

11

Chapter 2 Python Language Specifics

Escape Sequences

Python’s escape characters are used in quotes and include: new line ‘\n’, tab ‘\t’,

print a single quote \’, print a double quote \”, and print a back slash \\.

 Output

Escape Sequences

Variables

In Python, variables are not declared by data type and can only be used if a value

has been assigned to them. The single equal sign is the assignment operator and

the variable receiving the value is on the left side of the operator.

variable = expression or value

user_age = 29 # 29 is assigned to user_age

The variable naming convention most used in Python is all lower case letters

with multiple words separated by underscores, which aligns with the PEP 8

Python Standards Guide. Python is case-sensitive. Variable names cannot be

Python key words and cannot contain spaces. The first character must be a letter

or underscore and then letters, digits, or underscores can be used. Software

engineering principles and most standards dictate that descriptive variable

names be used to add clarity to the code.

One interesting difference in Python is that variables can reference different

types while the program is running. In other words, a variable assigned to one

data type can be reassigned to another type. As an example, below the variable

my_value is assigned 99 as an integer, is then used in an equation, and is then

reassigned the string “Now a string” (single or double quotes work). The output

shows the reassignment is implemented.

12

Chapter 2 Python Language Specifics

Data types categorize value in memory: int for integers, float for real numbers,

and str is used to store strings. Floating point numbers are stored with double

precision although the data type double is not used in Python.

Keyboard Input

Python has a built-in function called input that reads input from the keyboard.

The function returns the value as a string which can then be converted. The first

line of code below obtains user input as a string and assigns it to my_string. The

second receives a value from the user and converts it and stores it as an integer in

my_int. The third line receives the user input and stores it as a float in tempF.

Obtaining Keyboard Input

Converting an item to a different data type requires conversion similar to casting,

and will only work if item is valid for the conversion.

Mathematical Expressions and Operators

Python operators align with other familiar languages for the most part. Addition

uses (+) and subtraction (-), multiplication uses (*), and the modulus operator is

(%). The differences are that exponentiation uses two asterisks (**), and there are

two types of division operators. A single forward slash is used for floating point

division and two forward slashes for integer division with positive results being

truncated and negative results being rounded away from zero.

13

Chapter 2 Python Language Specifics

Mathematical Operators

Division Examples

For rounding numbers, Python has a round function that will round numbers to

an integer or to a specified number of places after a comma.

Exponentiation Example

Precedence in Python follows PEMDAS, parenthetical expressions first, followed

by exponentiation, then multiplication, division, modulo division, and lastly

addition and subtraction. Operators with the same precedence are handled left to

right, and precedence can be forced using parenthesis.

14

Chapter 2 Python Language Specifics

Mixed-type expression results depend upon the data types in use.

Two int values - the result is an int.

Two float values - the result is a float.

int and float - The int is temporarily converted to a float, and the result

of the operation is a float.

Programmer type conversion of a float to an int causes truncation of the

fractional part.

The Math Module

The Python mathematical functions are contained in the math module. This

module is readily available in the Python shell, but must be imported (shown

later) when programming in files. The list of math functions includes: acos(x),

asin(x), atan(x), cos(x), hypot(), log(x), sin(x), sqrt(x), and tan(x). The module also

defines a value for pi and e, and provides conversions for degrees to radians,

radians(x), and radians to degrees, degrees(x). All of these functions return float

values.

When using the math functions, the math module is imported and the word

math and the dot operator precede the functions as shown in these examples.

Random Numbers

Python includes random number generation with several library functions that

require importing random. The lines below import the random library and assign

num a random integer within the range of 1 to 100 inclusive.

15

Chapter 2 Python Language Specifics

This line assigns a random integer from 0 thru 9 to num. Note that 10 is excluded.

Finally this line assigns a random tenth integer from 0 to 100 to num, 0, 10, 20, etc.

The random number generator can be seeded as well. When the random library

is imported it uses the system time as the seed, but the following statement will

provide consistent “random” numbers.

For floating point random numbers between 0.0 and 1.0, the random function is

used as shown here.

The uniform function allows setting a range for random floating point numbers

as shown here.

Breaking Long Statements

Statements in Python can be broken across lines using the line continuation

indicator (backslash) shown in the first example below. However, the backslash

is not necessary when a statement is enclosed in parenthesis as in the second and

third examples below.

16

Chapter 2 Python Language Specifics

Constants

Strictly speaking, CONSTANTS are not available in Python. That is, they can be

changed. However, they are used and are indicated using all uppercase letters to

indicate that they should not be changed.

 EARTH_RADIUS = 3959.0

 earth_circumference = 2 * 3.1415 * EARTH_RADIUS

Functions and Methods - Terminology

Function – a named block of executable statements

Method - a function that exists inside of an object

17

Chapter 3 Getting Started in Python

Chapter 3

Getting Started in Python

Python with IDLE is free to download and use and should be installed prior to

continuing (see Appendix A). IDLE is intended to be a simple IDE that is cross-

platform, and is suitable for starting out in Python especially in an educational

setting. It provides a text editor and Python shell with syntax highlighting and

smart indent. IDLE features an integrated debugger with breakpoint capability

and call stack visibility which few students have experienced. IDLE is free to

download and use (it is installed with Python), and it does not have the host of

features that tend to clutter many IDEs with limited benefit. In addition, most

IDEs are similar in look and feel which provides a singular exposure. The IDLE

environment provides an additional educational experience in programming.

Python with IDLE

18

Chapter 3 Getting Started in Python

The Python Shell and IDLE

IDLE is installed with Python and is launched using a batch file called idle.bat

found in the Lib/idlelib sub-directory. Creating a shortcut at a higher level to the

batch file makes launching it more convenient.

The Python Shell

Launching IDLE produces the Python shell. Single lines of code can be written

directly into the shell and run there, and help is available by typing help(’).

Ex. 3.1 - A line of code entered into the shell will execute when Enter is pressed.

print (“This is from the shell”)

19

Chapter 3 Getting Started in Python

Ex. 3.2 – This line of code includes an equation as the second argument passed to

the print function. Both are output when Enter is pressed.

 print (“3 plus 4 = ”, 3 + 4)

Programming in the shell and executing the lines works well for code snippets or

examples, but the goal is to write complete Python programs. The shell simply

uses the interpreter to execute the lines we’ve typed when Enter is pressed. Files

will be used to write and execute more complex programs.

Ex. 3.3 – The IDLE editor is started by choosing File -> New File from the menu.

The new window is the edit window where sequences of Python commands are

entered. Unlike the shell where the lines execute when Enter is pressed, the lines

in the editor will be executed as a group to form a program. The title of the

window below will change from “untitled” when it is saved. The drop-down

menus provide basic IDE functionality.

20

Chapter 3 Getting Started in Python

Ex. 3.4 – The lines of code in the edit window below have an intentional error.

Running the lines shown will reveal one way that IDLE indicates errors.

New File Window

To run the program, select “Run” and then “Run Module” from the menu or just

press F5. Either way, IDLE will force saving the file before running the program.

After the file has been saved, Python will run the program.

Program Running in the Python Shell

When a response to the prompt is entered, the intentional error in the code will

surface. The error information provided includes the file name and line number

for the error, as well as the line of code itself along with the type of error. The

line numbers in the program can be seen at the bottom right of the Python

program window. The function call len(name) returns an integer which is the

21

Chapter 3 Getting Started in Python

length of the string passed to it in name. Python cannot concatenate an integer

onto the string “Your name has “, so execution stops.

Traceback Error

To correct this, convert the result of the function call to len to a string using str as

shown below.

Ex. 3.5 – After correcting the code, saving it, and running it again (F5), the

program now runs correctly (notice that the space was counted by len).

That is one type of error alert in IDLE. Another type is a syntax error. In many

cases IDLE will highlight the actual code where the error occurs by boxing it in

red and producing an error dialog.

In the example below, the characters “CV” were erroneously typed at the end of

the second line. The actual error in the code is highlighted and IDLE produced a

syntax error dialog box.

22

Chapter 3 Getting Started in Python

Syntax Error

Exiting Python

To leave IDLE, just close the windows.

Since IDLE insists that files are saved before each execution, it's hard to

lose changes when exiting IDLE.

To be really safe, save the program manually before closing the editing

window.

Choose "File" on the menu bar and "Save" from the drop-down menu

or use Control-S.

23

Chapter 4 Decisions, Logic, Loops, and Functions

Chapter 4

Decisions, Logic, Loops, and Functions

If, else, and elif

The syntax for the IF statement has three distinctions in Python; first parenthesis

do not surround the conditional statement, second, a colon follows the

conditional statement, and third, a block of code associated with it is formed

through indentation, not braces. The general format for an “if” is shown below.

The ELSE condition is handled the same way.

The else condition also requires a colon, and the IF clause and the ELSE clause

must be aligned.

24

Chapter 4 Decisions, Logic, Loops, and Functions

For an else-if condition, Python uses ELIF as shown below. Again, the clauses are

aligned using indentation.

Boolean Logic and Relational Operators

Boolean Logic and relational operators in Python are similar to other languages,

and resolve to either True or False. The operators function as follows:

> greater than

< less than

>= greater than or equal to

 <= less than or equal to

 = = equivalent (two equal signs without a space)

 != not equivalent

Relational Operators

Strings can be compared using the equivalence operator which compares each

character based on their ASCII values.

The logical operators are the actual words “and”, “or”, and “not”, and the IDE

will color code these for clarity. Short circuit evaluation is also used as in other

languages; meaning, in a logical and condition, if the left expression is false, the

right expression is not evaluated. In a logical or condition, if the left expression is

true, the right expression is not evaluated.

25

Chapter 4 Decisions, Logic, Loops, and Functions

Logic Operator Example

Boolean variables are also available in Python as the bool data type which

operates as true or false.

Repetition Structures (Loops)

Repetition structures follow the colon and indentation rules associated with

conditions. A colon is placed after the condition and indentation forms the block

of code executed when the condition is true. A WHILE example follows:

The Python FOR loop has some differences that require explanation. It is

designed to work with sequences of data and iterates once for each item in the

sequence. Each value in the brackets will be placed in variable for use in the loop

statement or statements.

The next few examples are in exercise format to provide some experience with

Python loops. To execute them, launch IDLE, open a file, and enter the example

code. Save the file each time and press F5 to run.

Ex. 4.1 – FOR loop example

When this code is run, each letter in the word “something” is placed in the

variable temp one letter at a time and is then passed to the print function. The

letters are displayed vertically because the print function adds a line feed.

26

Chapter 4 Decisions, Logic, Loops, and Functions

Range

Python has a RANGE function to simplify writing limited and count-controlled

loops. The function can accept one, two, or three arguments as shown below.

When one argument is passed to the range function, it is used as an ending limit

for the range beginning at zero.

Ex. 4.2 – FOR loop using Range with a Single Argument

When the code executes, the output begins at 0 and ends at 99 since 100 is the

limit and it is not included.

When two arguments are passed, they are used as the starting and ending limits

of the series.

Ex. 4.3 – FOR loop using Range with Two Arguments

The output for this example begins at 20 and ends at 49 since 50 is the limit.

When three arguments are passed the third argument is used as the step value

for the series.

Ex. 4.4 – FOR loop using Range with Three Arguments

The outputs for this loop are multiples of 5 from 20 thru 45 since the third

argument is the step.

Any or all of the integer literals in the range function examples above can be

replaced with variables. In the next example, all three literals are replaced with

variables.

27

Chapter 4 Decisions, Logic, Loops, and Functions

Ex. 4.5 – Range function using three variables instead of integer literals

While Loop

The while loop structure is similar to other conditional structures with a colon

after the condition and indentation for the statements associated with the loop.

The general format is:

There is not a do-while loop construct in Python. A while loop or for loop is

used to implement the logic required. A while loop example follows.

Functions

There are two types of functions in Python, void functions that just perform a

task and value-returning functions that return a value. The code for a function in

Python is called the function definition and it begins with the keyword def which

is followed by the name of the function, a pair of parentheses, and a colon. The

first line is referred to as the function header, and the statements that will execute

when the function is called are indented and form a block of code (the function

body). The general format is shown below.

28

Chapter 4 Decisions, Logic, Loops, and Functions

A reminder about indentation is warranted. Indentation forms a block of code in

Python. The function names, including main begin at the margin, and the

function bodies are indented forming a block of code for the function. The IDE

highlights items by color-coding the text as shown below. Also note that it is

much easier to use the tab key for indentation than to count spaces to be sure

they are always the same.

Function Structure

Function Variables and Scope

When a variable is declared within a function, its scope is the function (this

includes the main function), and it is referred to as a local variable. Therefore, a

variable defined inside a function is not accessible outside that function, and

different functions could have variables with the same name without causing

any conflict. Each of the variables would have its particular function as its scope,

and would not be accessible by the other function. If several engineers are

working on the same program, but they are working on different functions, they

may name a local variable using the same name.

29

Chapter 4 Decisions, Logic, Loops, and Functions

In the examples that follow, line numbers are shown for the explanations that

follow. Displaying line numbers is available in the IDLE Options menu.

In Example 4.6, Line 3 defines and names the function using def, the name of the

function, a pair of parenthesis, and a colon. Note the indentation of lines 4 and 5

which form the block of code associated with function. Line 8 is the actual

function call. Notice that the call to the function does not have a colon.

As the interpreter reads through the code, it executes the function when line 8 is

reached. The example program simply executes the function. There is no main

function in this example, but it will run.

Ex. 4.6 – A Simple Function

Adding a main function provides flow of control.

Ex. 4.7 – A simple Function called from main

Notice that the function definition starting on line 9 seems to be inside main, but

it is below main and out-dented the same as main. Line 15 is the call to main

which begins execution at line 4. The output function is called on line 6 and

30

Chapter 4 Decisions, Logic, Loops, and Functions

executes. As many functions as are needed can be added. Recall that the

interpreter reads through the lines top to bottom. When it reaches line 15 it

executes the program. The output is shown below.

Functions, Passing Arguments

Passing arguments to functions are handled similar to other languages with the

exception of a data type in the function header. Like Java, there is no pass-by-

reference (Python allows multiple values to be returned by functions which will

be covered later). The previous program has been modified below to pass an

argument. Main assigns a string to the variable on line 5, and passes the variable

on line 6 to the function. The function has been modified on line 9 to accept the

variable, and line 10 prints the phrase.

Ex. 4.8 – Passing an Argument from main to a function

31

Chapter 4 Decisions, Logic, Loops, and Functions

When passing multiple arguments to functions in Python, the ordering of the

arguments must be consistent between those passed and those received.

However, Python does allow re-ordering arguments when passing them using

keyword arguments which are covered next.

Keyword Arguments specify to the receiving function which parameter is to

receive which value that is being passed. As an example, the function below has

three arguments: first, second, and third. The call to the function passes them in

the incorrect order but specifies the parameter and value.

Ex. 4.9 – Passing Keyword Arguments from main to a function

The output is 1 2 3 because the function correctly assigns the values. The print

function puts a space between each of the variables being displayed by default.

Functions, Returning Multiple Values

As mentioned previously, functions in Python can return multiple values. This

resolves some of the issues created by not having the ability to use pass-by-

reference which would allow a function to change multiple variables

permanently. Recall that pass-by-reference allows a function to change the value

of a variable passed in as an argument because the function has a reference to the

variable - access to the memory location of the variable.

The following example includes a function returning a single value and a second

function that returns multiple values. The returned values must be received in

the order that they are returned.

32

Chapter 4 Decisions, Logic, Loops, and Functions

Notice that all of the function definitions (lines beginning with def) are at the

margin. Main is a function as is get_sum and get_sum_and_dif. They are each

defined and when main is called on the last line, the program executes and calls

the functions.

Ex. 4.10 – Returning Single and Multiple Values from a function.

To return a Boolean value, assign true or false to a variable and return it. A

function can also simply return true or false if there is an assignment statement

to receive it.

As shown later in the text, functions defined in other files require the file name

and the dot operator to access.

33

Chapter 4 Decisions, Logic, Loops, and Functions

Global Variables

Global variables should be used sparingly if at all since their use makes

debugging very difficult. Declaring a variable outside any function in Python

makes it global and accessible to all areas of the program. Then to assign a value

to a global variable inside a function requires the global keyword to precede the

variable.

Note that in the program above, num must be declared as global in main using

the keyword prior to an assignment statement. Combining them as shown here is

not permitted.

global num = int(input(‘Enter a number: ‘)) # invalid syntax

Pointers

The Python language does not have pointers per se, but object references. When

a string (string object) is created, there is a reference in memory. Strings are

immutable but when a string is modified in Python, a new string is created and

the reference for the original string variable is now a reference to the new string

memory location. The interpreter will eventually remove the original now-

unreferenced original string variable.

34

Chapter 4 Decisions, Logic, Loops, and Functions

The following program reveals memory locations using the id() function which

returns the identity of an object. The program then shows the different memory

locations used by passing an argument and by modifying a string.

The output for the program is:

 Memory 1 is: 2902688 # initial string

 Memory 2 is: 2902688 # received in the function

 Memory 3 is: 47600688 # modified string in the function

 Memory 4 is: 2902688 # back in main

 Memory 5 is: 47600688 # modified string in main

>>>

35

Chapter 5 GUI Design & Development

Chapter 5

GUI Design & Development

Graphical User Interfaces are event driven by user input. The user determines

the sequence of many of the events; therefore, careful design is required to

control access to the events. For instance, a button that computes a result that

requires user input of a value should not be enabled until the user has input the

required value. Situations like this must be considered in the design phase of the

interface, otherwise required modifications will surface in the test phase when

issues are found. This increases the input validation aspects of the program. A

value needed for computation must be entered by the user before allowing

computation, and the value entered must be within the correct range of values

for the computation to avoid issues such as division by zero.

Consider a program that computes the circumference of a circle based on an

input of radius.

1. The radius must be input prior to computation

2. The radius input by the user must be a number

3. The radius input by the user must be a positive number

The graceful handling of incorrect input values is required for a robust and well-

engineered solution. In a non-GUI program, we might use a loop that iterates

until a correct value is entered. It would display an error message to alert the

user to the issue and re-prompt for input inside the loop. The same concept

holds true for a GUI program, but with the added requirement of employing

36

Chapter 5 GUI Design & Development

windows to handle the tasks. This situation will be explored later. Generating

the main GUI is the first step. This requires generating a window and placing

controls (aka widgets or components) on it. A control is an element of the

interface that enables a user to accomplish some function or to access an area of

the program.

Python is a well suited language for creating graphical user interfaces through

the Tkinter module. The module is installed with Python and provides windows

and controls that are easy to program. The Tkinter package is the standard

Python interface into TK GUI Toolkit. The name Tkinter is short for TK Interface

and the TK Toolkit is used by many developers in other languages as well.

Some of the Tkinter controls include:

Button causes an action or event when clicked

Canvas rectangular area for graphics

Checkbutton On or Off position check boxes

 Entry single line entry control

Frame container that can hold controls

Label area that displays one line of text

Listbox user selection list

Menu list exposed when a menu button is clicked

Radiobutton select/deselect control

Before selecting controls for the interface, a preliminary design should be

completed. This provides a layout for the window and an idea of how it will

look and operate prior to writing any code. Storyboarding (walking through the

program operation steps) can also be helpful at this stage. The example in this

and subsequent chapters builds the Data Analysis Project in Appendix C.

The example project requires a standard initial window with three buttons:

Login, Create Account, and Cancel. This is the main window for the program

and entry point for the user. A first sketch might simply include a window and

the three buttons.

37

Chapter 5 GUI Design & Development

The opening or initial window is the first impression of the program for the user.

An improved sketch might include a program title and a graphic that reflects the

nature of the program.

Ex. 5.1 – Example Sketch of initial GUI.

Initial GUI Sketch

To create a main GUI with a title, a graphic, and three buttons, Python provides

controls and layout managers including: the Place Geometry Manager, Grid

Geometry Manager (grid), and the Pack Method to position the controls.

Additional layout managers are available in modules that can be added to

Python using the PIP installer shown in Appendix B. The examples will use grid

and the Tkinter package which is installed with Python. Controls can be located

with grid using a two-dimensional table of rows and columns.

Generating the Main Window

Creating the main window requires introducing additional components, and the

Python main loop. The tkinter main loop executes when the program starts and

continues to run waiting for user actions until the user ends the program. This

has many benefits and adds a few additional considerations.

Programmers use an object oriented approach to GUI development, and the

main window will be created as an instance of the main window class.

Tip: Line numbers for the code are shown in the bottom right corner of the IDLE Editor.

38

Chapter 5 GUI Design & Development

Ex. 5.2 – Main GUI, Interface Code.

As noted previously, attention to indentation levels is critical in Python. The code

below generates a window (main_win), having a minimum size, title, and label.

1. import tkinter as tk

2.

3. class DataGUI:

4. def _ _init_ _(self):

5. self.main_win = tk.Tk()

6. self.main_win.title("Data Analysis Example")

7. self.main_win.minsize(width=550,height=200)

8.

9. self.heading_label = tk.Label(text='Data Analysis Program',\

10. font=("Helvetica",16), fg="blue")

11. self.heading_label.grid(row=2, column=1)

12.

13. tk.mainloop()

14.

15. dataAnalysis = DataGUI()

Line 1 imports the Tkinter module as tk which allows using tk when accessing

the library as shown on line 11 where the tk.Label is created.

Line 3 declares the class.

Line 4 begins the initialization function for the window with two underscores

before and after the word init. Self refers to the newly created object.

Line 5 creates the main window.

Line 6 adds a title to the window border. The icon on the border can also be

changed as we’ll see later.

Line 7 sets a minimum size for the window.

Lines 9 & 10 create a label using the text, font style and size options.

Line 11 positions the label created on line 9 using grid geometry.

Line 13 starts the tk main loop.

Line 15 creates an instance of the DataGUI class called dataAnalysis.

39

Chapter 5 GUI Design & Development

In Ex 5.2, the image and buttons have not been included. It simply creates the

main window with a title on the title bar, and a heading label. In software

engineering, building a portion of the project and testing that portion before

moving on is referred to as the “build a little, test a little” approach. As new

code is added, any issues or errors that surface would be in the added code. Is

easier to debug five lines of code or fifty lines of code?

The Main GUI code in Ex. 5.2 runs and produces this window.

Simple Window with Title and Label

The code when executed will generate the window. The window title is on the

border, and the program title (heading_label) is Helvetica, font size 16, and blue,

but the label is positioned far left even though the grid positions of row 1 and

column 2 were designated (copied below).

The Grid Geometry Manager (grid) will size each row and column to the smallest

size required for the items positioned in them. In this case there is nothing in

row 0 or 1 and nothing in column 0, so the position of the program title doesn’t

display where the code indicated. It might be tempting to place invisible controls

in rows and columns to fill them with “something” so that the controls are forced

to be in the desired positions. Here is an example using a blank label to try and

move the program title. Notice that the text for the label is simply spaces

between quotes.

40

Chapter 5 GUI Design & Development

As shown below, placing the blank label in row 0 column 0 moves the title down

and to the right, but not to the desired location. There is also no indication as to

how this would affect the other controls, especially, the Login button, which in

the design is on the left side of the window and will either be in column 0 or 1.

Example with Blank Label Added

Positioning Controls (GUI Design)

The positioning of elements on the window is part of the design phase. The

original sketch of the main window in the example included the program title,

image, and three buttons. Since the grid manager positions elements by row and

column, adding lines to the preliminary sketch provides a better representation

of the main window and where elements would be located.

Modified Sketch with Grid Lines

41

Chapter 5 GUI Design & Development

The modified sketch that includes lines for the rows and columns indicates: the

program title is located in row 0 column 1, the image is in row 1 column 1, the

Login button is in row 2 column 0, the Create Account button is in row 2 column

1, and the Cancel button is in Row 2 column 2. Notice that the “Program Title”

and the image go beyond the boundaries of the columns they occupy. The

different sizes of the elements must be considered when positioning them with

the grid layout and for the options used. The program title and the image span 3

columns, and there is a grid option called columnspan that can resolve this. For

the rows, if the buttons are considered to be a single row, then the title and image

also span 2 rows in height. The Grid option rowspan can resolve this.

The options rowspan and columnspan along with others provide flexibility in the

design and positioning of the elements.

Grid positioning options include:

column column location of the control

columnspan allow a control to span multiple columns

ipadx horizontal padding within the control borders

 ipady vertical padding within the control borders

padx horizontal padding around the control within a cell

 pady vertical padding around the control within a cell

row placement of the control on the grid

rowspan allow a control to span multiple rows

sticky One or more of N, S, E, W to align controls within cells

Planning the control positions and considering the use of options can save a lot

of time adjusting after the fact. Adding padding or a span option to one control

can move others which then forces changes to them as well. Then adjusting the

options for those controls can counteract the original change or create more

needed adjustments.

Focusing on the smallest or largest control in a row or column is an approach

that can save time and minimize adjustments. Consider in the example that the

buttons will be the same width and height and that they are the smallest controls

in the GUI. The other controls could be “spanned” to accommodate the row and

42

Chapter 5 GUI Design & Development

column sizes used for them. A redrawn main window sketch with modifications

to accommodate spanning columns and rows might appear like this:

Ex. 5.3 – Main GUI sketch redrawn.

Modified GUI Sketch Grid Lines

From this sketch, positioning and spanning can be determined, but there are also

methods to configure columns to give them a minimum width and to configure

rows for a minimum height. If a control is the sole occupant of a row or column,

the row or column size can be increased. That way the control does not have to

span multiple rows or columns. This is helpful, and it is important to remember

that all rows do not need to be the same height, and that all columns do not all

need to be the same width.

Ex. 5.4 – Column and Row Configuration Settings

Adding configuration settings for the columns accommodates and centers the

label horizontally. The configuration setting minsize=50 for row 0 moves the

43

Chapter 5 GUI Design & Development

program title down, and adding the rowspan option to the grid positioning of the

label accommodates the height of the font. Note that this could also be done by

setting a minimum row height for row 2 where the label is positioned. The

settings can be modified to accommodate design and preference.

Configured and Aligned Simple Window

Button Controls

GUIs typically contain button controls that allow some action to take place when

users click them. The Tkinter button control has many options for customization

and can be positioned much the same as a label.

Button options include:

bg background color

fg foreground (text) color

font text font for the button face

height height of the button in text lines (font dependent)

image image to be displayed on the button

justify multiple text line alignment (LEFT, CENTER, RIGHT)

padx padding left and right of text

pady padding above and below text

relief type of border: SUNKEN, RAISED, GROOVE, and RIDGE

state enable or disable the button (normal, active, disabled)

width the width of the button

Performing a control review at Python.org would provide many other options

for buttons, a few of which will be used and explained in subsequent examples.

44

Chapter 5 GUI Design & Development

The GUI in the example requires three buttons: Login, Create Account, and

Cancel. From the design sketch, they occupy columns 0, 1, and 2 respectively.

The Login and Create Account buttons will call functions in the program for

operations and the Cancel button ends the program. The command option for

the Cancel button shown in Ex. 5.5 below destroys the window and ends the

program.

The syntax for buttons follows a name (Master, options) convention. The example

below omits “self.main_window” as the Master, since it is implied. The first option

is the text to appear on the button (in this case “Cancel”), followed by a width

setting for the button, the font for the text, and the command to execute when the

button is clicked (the callback function). The button creation is followed by a line

of code that positons the button on the grid.

Ex. 5.5 – Cancel Button Creation and Placement

The width setting for the Cancel button was chosen based upon the length of the

label for Create Account which is the longest button label. The Create Account

button would be wider than the other buttons if they weren’t adjusted. The

other buttons are handled similarly, but without the command option for the

functions. This allows testing the creation and positioning of the buttons.

Ex. 5.6 – Button Creation and Positioning.

Configured Window with Buttons

45

Chapter 5 GUI Design & Development

For the window in Ex. 5.6, a few additional adjustments were made to the code

for the other two buttons. The main window minsize option was increased in

height, and a rowconfigure for row 3 was added. Row 3 will contain the image in

the next step, so an adjustment was needed. Note that the example used row 4 as

the row for the buttons.

The example’s main GUI is developing, but the buttons are placed at the left and

right edges, and the image hasn’t been added. Adjusting the buttons could be

done with padx, which would put space on the left and right of the buttons or

columns could be added to the sides of the window.

Ex. 5.7 – Using padx with Button Controls

Images

Adding the image to the main window will be similar to positioning the controls.

Python’s Tkinter has a PhotoImage class for handling images that supports the

GIF and PGM/PPM formats. If other file formats are needed, the Python Image

Library (PIL) contains classes that can handle over 30 formats and convert them

to Tkinter compatible image objects. The image file can be located with the

program files, which is the default directory, or a path to the file can be used.

When a PhotoImage instance is used, a reference to the image must be retained

or Python’s interpreter could eliminate it even if it is being displayed. Also, to

use PhotoImage, the entire Tkinter module must be imported. To do this, a line

of code is added above the import for tkinter.

Note: Avoid using wildcard import statements when multiple modules are

imported. Name clashes can occur when modules have functions or classes with

the same name.

46

Chapter 5 GUI Design & Development

Adding the Image

The code to use an image consists of four lines. The first line assigns the file to a

PhotoImage object, the second places the image on a label (a canvas or frame can

also be used), the third retains a reference to the image, and the fourth positions

the image in the grid.

Ex. 5.8 – Adding an Image

Note the use of columnspan for the image as well as some adjustments needed to

other controls. For the resulting GUI shown below, the buttons were moved

down a row and row 6 was added with the rowconfigure minsize option to add

some space below the buttons. The rowconfigure minsize for row 3 was also

increased to accommodate the image. Since no other control is in the row,

configure was used instead of rowspan.

Ex. 5.9 – Main Interface.

Completed Main Interface Window

47

Chapter 5 GUI Design & Development

The example project buttons are inactive with the exception of the Cancel button

which destroys the window and ends the program. The functionality for the

others will require additional design considerations including entry control s and

file handling which is covered in the next chapter.

Freezing Window Size

The controls are positioned for a window of a specific height and width set in the

program. If a user stretches the window in any direction, the controls will no

longer be in those positions. To keep this from happening, the resizable function

for height and width can be used to set them to False. There are two variations.

Frames and LabelFrames

The frame container is a rectangular area that can be used for padding in a

window or to group controls when positioning complex layouts. It can also act

as a placeholder for video inserts.

Frame options include:

bd size of the border (defaults to 2 pixels)

bg background color

height height of the frame

relief type of border: flat, groove, raised, ridge, solid, or sunken

width width of the frame

The default relief is flat. To use the other relief options the border size must be

increased using the bd option. The default size for a row and column is 1 pixel,

so they must be resized to accommodate the frame. The following code

generates three frames of different colors in a window. Note the use of loops to

give the rows and columns weight using configure. Weight is used to distribute

added space between rows and columns. A row or column with the weight 2

will grow twice as fast as one with weight of one. The default is zero (it will not

grow at all).

48

Chapter 5 GUI Design & Development

Ex. 5.10 – Frame Container Example

Running Ex. 5.10 produces this window.

Frame Example

The LabelFrame is another container that can be used to arrange controls, that

has options similar to the Frame, and a text option for placing a string inside.

49

Chapter 6 File Handling

Chapter 6

File Handling

File handling in Python uses a Mode designation for files when reading and

writing. The Python open function creates a file object and associates it with a

file in the specified mode. The modes are ‘r’ for reading (read only), ‘w’ for

writing (contents erased or file created), and ‘a’ for appending (append to

contents or create the file if it does not exist and then append).

Open the file data.txt in read mode. If it does not exist, the statement fails.

Open the file data.txt in write mode. If it exists, delete the contents. If it does not

exist, create the file.

Open the file data.txt in append mode. If it exists, append to the end. If it does

not exist, create the file and append.

If a path is specified, Python must be told to treat the escape sequence as a literal

backslash. Below, the ‘r’ without quotes before the path accomplishes this.

50

Chapter 6 File Handling

Closing a file is accomplished using the close method and should always be

handled deliberately by the program. Ex. 6.1 opens a file, writes some text in the

file, closes the file, then re-opens the file for reading, and again closes the file.

Writing and Reading File Content

 Ex. 6.1 – File handling

Line 4 creates a new file for writing called newFile.txt

Line 5 writes a phrase to the file with a line feed at the end

Line 6 writes another phrase to the file with a line feed

Line 7 closes the file

Line 9 re-opens the file in read mode

Line 10 reads the entire contents of the file into a string

Line 11 closes the file

Line 13 prints the contents of the string

Line 15 calls the main function to execute the program

Example Ex. 6.1 reads the entire contents of the file into a string. Often it is

preferred to read one line at a time or even one word at a time. Python provides

methods for these as well. This code reads a line from the file infile.

51

Chapter 6 File Handling

Whether the entire contents of a file is read into a string, or it is read one line at a

time, the split method can be used to separate the words. It uses whitespace by

default as the delimiter when splitting, and can accept any separator. The

following line would split comma delimited data.

The following example first reads an entire file into a variable, and splits it into

words for output. After closing the file, the program reopens the file and reads

one line at a time from the file and splits each line into words for output.

Ex. 6.2 – Using the split method to separate words after reading a line from a file

Line 5 reads the entire contents of the file into all_text.

Line 8 splits the text from all_text into words for each to be output by line 9.

Line 13 reads one line of text at a time from the file into line, and the nested FOR

loop on line 14 splits the lines into individual words for each to be output

by line 15.

Removing Newline Characters

When writing data to a file, a tab ‘\t’ or newline ‘\n’ is often added to separate

data or data sets. Python does not automatically remove the newline character

52

Chapter 6 File Handling

when reading from a file. The method rstrip will remove white space (\n, \t,

and space) from the right side of the string. The string modification methods are

shown below.

String modification methods:

lower() returns a lower case copy of the string

lstrip() returns a copy of the string with leading white space

characters removed

lstrip(char) returns a copy of the string with leading instances of char

removed

rstrip() returns a copy of the string with trailing white space

characters removed

rstrip(char) returns a copy of the string with trailing instances of char

removed

strip() returns a copy of the string with all leading and trailing

white space characters removed

strip(char) returns a copy of the string with all leading and trailing

instances of char removed

upper() returns an upper case copy of the string

String Modification Methods

Reading and Writing Numeric Data

Numbers read from a file are read as strings and must be converted to a numeric

data type in order to use them as a numeric value. Chapter 2 introduced casting

for type conversion and it can be used when reading from a file, but the data

must be correct for the cast or an error will occur. This means removing tabs and

linefeeds that may be attached to the data before casting. When a delimiter is

present, using read() would include the delimiter (tabs in this case) in the

returned string. Using readline() would also include any delimiter within a line

including spaces between items. Conversely, when writing numbers to a file,

they must be converted to strings before writing.

53

Chapter 6 File Handling

Example Ex. 6.3 writes integers to a file using str for conversion, then writes their

sum converted to a string. Note that the integers are added together and then

the result is converted to a string for writing. Attempting to write to a file

without the string conversion produces a TypeError.

Ex. 6.3 – Writing Numbers to a File

Line 10 uses str to convert the numbers to strings before writing to the file and

adds the newline to each.

Writing Numbers to a File

Reading numeric data requires the same considerations. The elements read from

the file must be converted from strings to integers or floats before using them as

numeric values.

Example Ex. 6.4 reads three values from the output file of example 6.3 and stores

them in three variables. The program then displays the read-in strings and the

sum of the values converted to integers, stores the result of the sum, and finally

displays it.

54

Chapter 6 File Handling

Ex. 6.4 – Reading Numbers from a file

Line 10 displays the numbers on individual lines since the line feed was also

read. They are treated as strings in the print statement.

Line 11 prints the sum of the individual values converted to integers.

Line 13 adds the values converted to integers and stores the result as an integer

in the variable sum.

Line 14 prints the variable sum.

.

Reading Numbers from a File

The technique used for reading and handling data from a file will be dependent

upon the task required. The data can be read one item or line at a time, or the

entire contents can be read at once. Loops are typically used when reading one

item or line at a time into a variable. The flowchart from Chapter 1 requires a

55

Chapter 6 File Handling

single computation and display of the result for each item in the file. The code

beneath the flowchart is an example of a loop that could be used in this situation

using the file from Ex. 6.4.

File Reading Flowchart

Ex. 6.5 – Reading Numbers from a file and processing them as integers

Notice in the output below that the numbers are displayed as floating point

numbers. The promotion occurs since they are being multiplied by 3.5 (a float).

56

Chapter 6 File Handling

Ex. 6.5 Output

The same conversion can be used with floating point numbers. The next example

modifies Ex. 6.5 to use float instead of integers.

Ex. 6.6 – Reading Numbers from a file and processing them as float

Ex. 6.6 Output

Exceptions

Exception handling is required for when a file cannot be created or cannot be

opened, and to ensure that there is not a data type mismatch. The format for an

exception handler in Python is the try/except statement. The general format is:

57

Chapter 6 File Handling

The try block is entered and if a statement raises an exception, the handler

immediately following the except clause that matches the type of exception

thrown executes and the program continues. An exception that is not handled

will halt execution of the program.

Ex. 6.7 – Exception Handling

Each type of exception that could be thrown from the try suite should have an

exception handler. An exception clause that does not list a specific exception,

will handle any exception that is raised in the try suite. This should be the last

exception in the series and could be considered a default handler as shown

below.

Ex. 6.8 – Exception Handling

There is a finally clause available in Python that executes regardless of whether

an exception was raised or not. The finally clause can be used for clean-up like

closing a file. Recall that some of the statements in the try block may execute

before a statement that throws the exception.

58

Chapter 6 File Handling

Ex. 6.9 – Exception handling with finally clause

The try/except statement can also include an else clause that will execute only if

no exceptions were raised.

Since an exception is an object that contains error information, the exception

object can be assigned to a variable and passed to the print function to provide

information as shown here.

File dialogs for opening and saving files are covered in Chapter 16.

59

Chapter 7 Multiple Windows & Design

Chapter 7

Multiple Windows & Design

Back to the Project

The project requirements for creating a user account and login will require file

handling. When a user logs in, the login information must be verified against

current accounts. If the user is creating a new account, it should only be

completed if the account does not already exist. Again, checking the current

account information is necessary. Both of these scenarios require a file or files for

storing and comparing account information. They also require another window

for obtaining user input and error handling. Tackling these requirements all at

once would be complex, but they can be divided into segments and completed

more easily.

Account Creation Window and Dialog

60

Chapter 7 Multiple Windows & Design

Step-wise Refinement and Iterative Enhancement

Breaking down a large problem or task into smaller segments is referred to as

Step-wise Refinement. A large problem or task is decomposed into smaller tasks

and those tasks are then decomposed into even smaller tasks. Once task size and

complexity are divided and refined into more manageable pieces, design and

development begins.

Once the design stage is completed, the segments are developed and the

program is built up as the various parts are completed and added. This process

of building and adding software in small segments is referred to as Iterative

Enhancement and aligns with the Agile Software Development Process.

With respect to the User Login and Account Creation operations, there are

several areas that can be refined, and a flowchart of the operation shows that

there is some commonality.

Account Creation and User Login Flowcharts

61

Chapter 7 Multiple Windows & Design

There are multiple ways of implementing these operations. One way is to modify

the initial window by destroying the controls on it and adding others to

accommodate account creation and login. Another way is to use separate

windows for each operation and to modularize the program by using multiple

classes, files, and functions. This option aligns more closely with Stepwise

Refinement, Iterative Enhancement, and an Object Oriented approach.

Button Click Action

When the Create Account button on the main GUI is clicked, the user will need

to enter a username and password. The button click should launch a window

with entry components to obtain the information. A command is used to call a

function that creates the account creation window. The code for the second

window is similar to that of the main GUI with some added features, but it will

be created as the result of a button click.

Ex. 7.1 – Adding a command to the Create Account button.

self.create_acct_button = tk.Button(text=' Create Account ', width = 16, \

font=("Helvetica",10), command=self.create_account)

self.create_acct_button.grid(row=5,column=1)

The function for the command self.create_account is added after the call to

tk.mainloop(). However, the function is part of the GUI class and it is indented

aligning with def __init__(self). This provides two advantages. First, it places the

code within the class for access and it allows modification to controls on the main

GUI like disabling the Login button. To assist with testing functionality, the

function can initially print something as shown here.

Testing each time new functionality is added saves debugging time and ensures

that each part is working as expected before continuing. As shown, testing the

command option for the Login button can be handled with a print statement.

62

Chapter 7 Multiple Windows & Design

This interim step in the development process is referred as a stub which is a

function that is incomplete but allows the program to run. It could be a print

statement as in the above example, or it could be a function that returns a value

indicating that it is incomplete. This is shown in the next example.

Stub example

def return_user_name():

return notaname # return value indicates that it is incomplete

The actual call to a function could also be commented, stubbed out, to keep

it from being called at all.

Create Account Window Design

The create account window should be designed using the same approach as the

main GUI. A sketch using a grid pattern helps to locate the controls on the grid

and allows configuring rows and columns prior to writing code. Using the

column and row configure methods provides any height or width tailoring

required to accommodate positioning.

Ex. 7.2 – Create Account window design sketch.

Account Creation GUI Sketch

63

Chapter 7 Multiple Windows & Design

A Second Python Development File (Modularization)

Following a modularization approach, the create account window class code

would be in a second Python file and imported into the main Python program

file. To create another file for a program, select File and then New File from the

menu on the main program window. An untitled window will open that can be

named when it is saved. The name of the file should reflect the code that is in the

file. As this program becomes more complex and grows in size, keeping things

organized will save time and effort. Some abbreviation or truncation can lessen

the amount of typing as long as it doesn’t add ambiguity. The goal is to keep it as

simple as possible. For the example, the file has been named create_acct_gui.py.

The lines below show the import statement added to the top of the example’s

main file. Note that the file extension (py) for the development file is not used.

from tkinter import * # imports everything from the tkinter module

import tkinter as tk # imports tkinter as tk

import create_acct_gui # imports the create_account_gui.py file

Building the Second Window

The code for the Create Account window will be similar in many ways to the

main GUI as far as control creation and positioning, but will not have a tkinter

loop. The creation of the instance of the AccountGUI will be in the function

create_account in the main file.

Ex. 7.3 – Create Account GUI file – create_acct_gui.py

1. # Code for the Create Account window in file create_account_gui.py.

2. from tkinter import *

3. import tkinter as tk

4.

5. Class AccountGUI:

6. def _ _init_ _(acct):

7. print(‘In the init for AccountGUI’)

64

Chapter 7 Multiple Windows & Design

For testing purposes, the file has an initialization method and a print function.

Notice that the object itself is passed to the init method into acct. In the

assignment statement (line 4 below), CreateAcctWin replaces acct and the objects

data is bound to the object (explained in Chapter 14).

To test the code completed so far, the function in the main file is modified to

create an instance of the second window. Recall that this function is below the

main loop, but inside the class.

Ex. 7.4 – Create an Instance of the Create Account Window from main

1. # Code for the Create Account window.

2. def create_account(self):

3. print(‘In the create_account function.’) # Test

4. CreateAcctWin = create_acct_gui.AccountGUI # instantiation

As shown on line 4, the file name followed by the class name is used to create an

instance of the object which is assigned to CreateAcctWin. In the

creat_acct_gui.py file, a print function to test was added.

class AccountGUI:

 def _ _init_ _(acct):

 print('In the init for AccountGUI') # Test

The create account window will have three labels, two entry controls, and two

buttons as shown in the sketch. To further test and create a window, a name for

the window is selected and used to add items to the window. In Ex. 7.5, acct_win

is the name of the window object. The parent or master window is self (the main

GUI). Python programmers often use root or master in place of self.

Ex. 7.5 – Create Account GUI Window.

class AccountGUI:

 def _ _init_ _(acct):

 print('In the init for AccountGUI')

 acct.acct_win = tk.Tk()

 acct.acct_win.title("Account Creation")

 acct.acct_win.minsize(width=500,height=250) # set window size

65

Chapter 7 Multiple Windows & Design

Code similar to the main GUI is added including the row and column configure

settings, the labels and buttons, and the text entry controls.

Text entry controls provide a way to position a text box on the window to obtain

user input. The designation acct.acct_win, in the code, places the control on the

correct window. Self was received as acct (which is the master), and acct_win is

the actual second window. The options for the entry control include setting a

width, justification of the cursor in the entry control using justify, and font

settings as shown here. To hide input, the code uses the show option.

 acct.acct_win.password_entry = tk.Entry(self.acct_win, width = 15, \

 justify='right', font=("Helvetica",10), show=’*’)

 acct.acct_win.password_entry.grid(row=6, column=3, sticky=W)

When the window is created, the cursor can be placed in the user name entry

control by forcing the focus.

acct.acct_win.userName_entry.focus_force()

Ex. 7.5 – The Create Account Window

Account Creation Window

In the example, each line of the password requirements is set in a separate row.

The button width options are not set, so the buttons are different sizes. The word

“Cancel” has fewer letters than “Create Account” so the buttons would not be

the same width unless the width is specified as in a previous example.

66

Chapter 7 Multiple Windows & Design

The login window code will be similar to the account creation code both in main

for handling the button click and in the file to create the GUI.

Ex. 7.6 – The Login Window.

User Login Window

Dialog and Information Boxes

When the user tries to create an invalid password or tries to login using an

invalid username or password, an error must be displayed. Very often this is

handled using a message box that explains the error and has an “OK” button that

must be clicked to continue. The tkinter.messagebox module provides

information boxes for this purpose and requires importing that module.

Message Box Functions

showerror() askquestion() askretrycancel()

showwarning() askokcancel()

showinfo() askyesno()

The arguments and options for the functions include:

function name choice of message box type (showinfo)

title the title on the title bar

message the text to be displayed

The different functions produce different message boxes. The code below

produces the standard message box which includes the “OK” button.

67

Chapter 7 Multiple Windows & Design

tk.messagebox.showinfo('Info Box Demo’, ‘Button was clicked.')

This code produces the warning box shown below.

tk.messagebox.showwarning('Warning Box Demo', 'There is a file open.')

This code produces the ask-ok-cancel box shown below.

tk.messagebox.askokcancel(‘Ask, OK, Cancel', 'Continue Operation?')

Note that the message boxes set the focus for the “OK” button allowing the enter

key to be pressed to continue.

Message boxes can provide a way of handling errors and validating input.

68

Chapter 7 Multiple Windows & Design

Centering Windows on the Desktop

When windows are created they are displayed in the far top-left corner of the

monitor. To center them when they are initially displayed requires getting some

display attributes. Obtain the display’s screen width and height and subtract the

window sizes and divide by two. Then pass the values to geometry again as a

string using the format for geometry.

self.main.minsize(width = 500, height = 300) # Establish the window size

Use screen width and screen height to calculate centering

x_Left = int((self.main.winfo_screenwidth() – 500)/2)

y_Top = int((self.main.winfo_screenheight() – 300)/2)

self.main_win.geometry("%dx%d+%d+%d" %(500, 300, x_Left, y_Top))

Note the “x” after the first “d” in the statement above. This essentially says that the

window should be 500 “by” 300 pixels.

Bringing a Window to the Front

To raise the window in front of others the lift() method can be used, or attributes(‘-

topmost’, True)

Ending a Program and Closing Windows

To determine that the user has ended the program by clicking the “X” in the

window, use protocol which can call a function.

To ensure that a program ends, import sys and use sys.exit().

69

Chapter 8 Data File Design & Data Handling

Chapter 8

Data File Design & Data Handling

For the project, storing the user names and passwords and retrieving them for

validation during login requires file and data handling. When designing data

storage and access, there are a few design and development considerations

including the format, text/binary, delimiters, and any encryption. These items

must be well thought out during the design phase due to the effect on

development of the current program and potential future expansion (scalability).

Many large-scale, data intensive programs require a formal Data Dictionary

which is a separate file that contains the data descriptions, format, delimiters

(data separators), the ordering of the data, and often, additional information and

comments.

Designing the data format is an important role that has a direct effect on program

design and operation, data handling, and the scaleability of the data and the

program. The data dictionary provides useful information about the file contents

and how to extract or parse the data for use in display and analysis.

Creating a data dictionary also allows the file to contain only data and flexibility

with respect to delimiters. Data dictionaries are often used to describe the

contents of databases and the relationship between its elements.

The sample file data dictionary below specifies individual column numbers for

the data elements.

70

Chapter 8 Data File Design & Data Handling

Data Dictionary Sample from NOAA

DD/MM/YYYY

GENERAL DATA FORMAT

ONE HEADER RECORD FOLLOWED BY DATA RECORDS:

COLUMN DATA DESCRIPTION

01-05 STATION NUMBER

08-12 RECORDING ENTITY NUMBER

14-25 YEAR-MONTH-DAY-HOUR-MINUTE (GMT)

27-29 ENTITY DATA RECORD A

31-39 ENTITY DATA RECORD B

41-45 ENTITY DATA RECORD C

47-51 ENTITY DATA RECORD D

53-67 ENTITY DATA RECORD E

Data File Sample

Using data such as this is made possible by examining the data while referring to

the data dictionary. Although the data file contains a header row, an explanation

for the columns is still needed. For instance, the three columns on the right of the

sample data are described in the file header row as MW.

71

Chapter 8 Data File Design & Data Handling

The data dictionary indicates that columns 14 thru 25 provide the data and time

of the data reading.

14-25 YEAR-MONTH-DAY-HOUR-MINUTE (GMT)

The final row in the sample file for those columns is shown below.

200601011054 (2006 01 01 1054)

The data dictionary makes it clear that this group can be parsed as:

Year 2006, January, 01, and 10:54 Greenwich Mean Time.

For the project user name and password data, there are many possible solutions

for storage and access. Both items could be written to a text file on one line with a

space or tab between them (columnar data), two lines could be used, or even two

files adding a security feature of not having them located together. A binary

format could be used instead of text, and encryption could be used as well.

Regardless of the storage/retrieval algorithm, the operations are the same with

some design choices.

Create Account Operations

During the Create Account operation, the design could require that the user

name be unique, that the password be unique, that each be unique, or that the

pair together be unique. In the Login operation, both must be validated as a pair.

Considering how the data will be used during login provides insight into how it

should be handled in the avccount creation operation. The functionality should

drive the design for storage of the data. Comparing the processes that will utilize

the data shows the similarities and the differences for design consideration.

Create Account Operation Login Operation

1. Get user name Get user name

2. Get password Get password

3. Verify as unique Verify as existing pair

4. Reject errors, go to Step 1 Reject errors, go to Step 1

72

Chapter 8 Data File Design & Data Handling

The only difference in operation is the verification process on Step 3.

Chapter 6 covered file handling from a read and write perspective. The

algorithm for account creation and login requires some string manipulation

covered in the next chapter in addition to file handling.

73

Chapter 9 Strings, Lists and Tuples

Chapter 9

Strings, Lists and Tuples

Python provides many ways for string examination and manipulation. The

individual characters can be accessed with a FOR loop as shown in chapter 4

(repeated here – temp is a temporary variable that receives a copy of each letter).

for temp in “something”:

print (temp) # displays each letter vertically

Strings are sequential and the characters can be accessed by index using square

brackets. Index numbering begins at zero, and ends at n-1.

Ex. 9.1 – Indexing Strings

a_string = ‘something’

print (a_string[0], a_string[3], a_string[7]) # displays s e n

Negative indexes can be used to access character positions relative to the last

character in the string. The index -1 is the last character in the string.

Ex. 9.2 – Negative String Indexes

b_string = ‘negative’

print (b_string[-1], b_string[-4], b_string[-6]) # displays e t g

74

Chapter 9 Strings, Lists and Tuples

The index can also be used to obtain a copy of a single character from a string.

Ex. 9.3 – Copying a Character from a String.

c_string = ‘copy’

ch = c_string[3] # obtains a copy of y

 print(ch) # displays y

If an out of range index is used, an IndexError exception is thrown.

Strings in Python are immutable, meaning they cannot be changed once created.

The ‘+’ operator is used to concatenate strings. Concatenating a string creates a

new string and assigns it to the variable storing the original string. The original

string can no longer be used because there is no longer a variable referencing it.

Eventually, the Python interpreter will remove the original string from memory.

The example below shows the ‘+’ operator used to concatenate strings.

Ex. 9.4 – Concatenating Strings.

 d_string = ‘New’

d_string = d_string + ‘ York’

 print(d_string) # displays New York

 d_string = 'New'

 e_string = ' York'

 d_string = d_string + e_string

 print(d_string) # displays New York

The len function returns the length of a string and can be used as a loop termination

condition.

Ex. 9.5 – The len function with Strings.

 f_string = ‘Length’

 print(len(f_string)) # displays 6

index = 0

while index < len(f_string):

 print(f_string[index])

 index += 1 # displays ‘Length’ vertically

75

Chapter 9 Strings, Lists and Tuples

String Slicing and Split

String slicing is used to select a portion of a string using a start, end, and step

specifier. The general format allows one, two, or three specifiers. When the first

specifier is omitted, Python uses zero as the start and the specifier as the end.

When two specifiers are used, the first is the start index and the second specifier

indexes the end of the slice and is not included in the slice. When three specifiers

are used, the third is the step in the sequence.

Ex. 9.6 – Slice expressions with Strings.

sequence = '123456789'

first_four = sequence[:4]

print(first_four) # displays 1234

second_four = sequence[5:9]

print(second_four) # displays 6789

every_other = sequence[0:9:2]

print(every_other) # displays 13579

Searching for content in strings is handled using the IN and NOT IN operators.

The following example would find the character ‘6’ in the string and display

‘Found a six’.

sequence = '123456789'

if ‘6’ in sequence:

print(‘Found a six’)

The Split method by default uses the space as a separator and returns a list

(discussed later in this chapter) of items in the string that are separated by

spaces. A different separator can be specified including ‘/ ’ when a date is being

parsed. The split method is accessed using the dot operator.

Ex. 9.7 – Split a String without a specified separator

my_string = 'hour minute second'

time_list = my_string.split() # split at spaces (default)

print(time_list) # displays ['hour', 'minute', 'second']

print(time_list[0]) # displays hour

76

Chapter 9 Strings, Lists and Tuples

Ex. 9.8 – Split a String with a specified separator

my_string2 = '10:23:59'

time_list2 = my_string2.split(‘:’) # split at colons

print(time_list2) # displays ['10', '23', '59']

print(time_list[0]) # displays 10

String Testing and Modification

The string testing methods return true or false and include: isalnum(), isalpha(),

isdigit(), islower(), isupper(), and others.

The string modification methods include conversion to upper and lower case,

and various strip methods: lower(), upper(), lstrip(), rstrip(), and strip(char).

The search and replace methods include: endswith(substring), find(substring),

replace(old, new), and startswith(substring).

Lists and Tuples

Lists in Python are sequences of data that are mutable, dynamic, and can be

indexed and sliced. They can also hold different types of data. There are no

arrays in Python, but lists provide similar functionality. Lists can be iterated over

and accessed in the same way as strings.

Ex. 9.9 – Numeric Lists

num_list = [5, 15, 25, 35]

print(num_list) # displays [5, 15, 25, 35]

for n in num_list:

print(n) # displays 5 15 25 35 vertically*

print(num_list[2]) # displays 25

* The numbers are displayed vertically since the print function adds a line feed.

77

Chapter 9 Strings, Lists and Tuples

Ex. 9.10 – String Lists

word_list = ['one', 'two', 'three', 'four’]

print(word_list) # displays ['one', 'two', 'three', 'four']

i = 0

while i < len(word_list):

 print(word_list[i]) # displays one through four vertically

 i = i + 1 # could be written as i += 1

print (word_list[2]) # displays three

Note the difference in the displayed output between the print function for the

entire list and the output from the loops. The brackets are removed since the loop

iterates over the list and copies the element in the list to the variable.

List elements can be changed and lists can be concatenated using the ‘+’ operator,

and added to or removed from. The len function works with them as well.

first_list = [‘a’, ‘b’, ‘c’, ‘d’]

print(first_list) # displays ['a', 'b', 'c', 'd']

first_list[1] = ‘z’

print(first_list) # displays ['a', 'z', 'c', 'd']

second_list = [‘e’, ‘f’, ‘g’, ‘h’]

first_list = first_list + second_list # concatenated lists

print(len(word_list1)) # displays 8

print(first_list) # displays ['a', 'z', 'c', 'd', 'e', 'f', 'g', 'h']

There are also built in functions for lists including: append(), insert(index, item),

sort(), remove(item), reverse(), min(list_name), and max(list_name).

Lists can be passed to functions and functions can return lists. In the next

example, the list num_list is passed to get_sum which returns a sum of the

numbers in the list.

78

Chapter 9 Strings, Lists and Tuples

Ex. 9.11 – Lists as arguments to functions

def main():

 num_list = [5, 15, 25, 35]

 print('The sum of the list is :', get_sum(num_list))

def get_sum(in_list):

 sum = 0

 for num in in_list:

 sum = sum + num

 return sum

main()

Lists can be written to files with writelines(list_name), but there are no line feeds

with this method. To include line feeds, a loop is needed and the newline

character needs to be added.

for item in my_list:

outfile.write(item + ‘\n’)

A tab or a space could be added the same way and used as a delimiter when

reading.

A tuple is simply a list that is constant and cannot be changed. Tuples process

faster and the fact that the data cannot be changed in a tuple protects the data.

Tuples can however be converted to lists, and lists to tuples.

my_tuple = tuple(my_list) # convert list to tuple

my_list2 = list(my_tuple) # convert tuple to list

79

Chapter 10 Remove or Modify Controls

Chapter 10

Remove, Modify, or Hide Controls

Back to the Project

Once an account has been created and the login successful, rather than creating a

new window, the main window can be modified to become the main interface

for the program. The login window can be destroyed and control can be returned

to the main window, which can then be modified for program interaction. This

will require changes to or removal of the existing controls.

Successful Login

80

Chapter 10 Remove or Modify Controls

The commands to destroy controls differ depending on what is being destroyed,

and in some cases reconfiguring or hiding the item is preferred to removal. The

main window has a command to handle the situation when the user cancels the

program that destroys the main window. Notice that in this case, the destroy

function has no parenthesis.

self.quit_button = tk.Button(text='Cancel', font=("Helvetica",10), \

 command=self.main_window.destroy)

To destroy the create account and login windows, the function destroy has

parenthesis.

self.acct_win.destroy() # destroy the window

In those cases when it is preferred, destroy can be used for most controls.

self.userName_label.destroy() # destroy a label

self.user_entry.destroy() # destroy an entry control

The grid geometry manager also has forget and remove methods. Both of these

methods remove the control from the grid manager. The control is not destroyed, and

can be redisplayed by grid or any other manager.

grid_forget() # control is not destroyed

grid_remove() # control is not destroyed

Controls can also be reconfigured instead of being destroyed using the config

method. The config method allows modification to controls as long as the grid

positioning statement is on a separate line when the control is created.

self.heading_label = tk.Label(self.main_window, text=”First Text”, \

font=("Helvetica",16), fg="blue")

self.heading_label.grid(row=1,rowspan=2, column=1)

self.heading_label.config(text='New Text', font=("Arial",16), fg="black")

self.heading_label.grid(row=3,column=3,columnspan=5,rowspan=2)

81

Chapter 10 Remove or Modify Controls

StringVar

The tkinter module provides the StringVar class. The StringVar modifies any

control that uses it whenever the StringVar is changed. This provides the ability

to have an immediate update to a control anytime the value that is stored in the

StringVar object changes. A StringVar is declared and assigned to a control.

my_svar = tk.Stringvar()

my_label = tk.Label(textVariable= my_svar)

The update to the StringVar can come from a variety of sources including button

clicks. The StringVar’s set method is used to change the text. In this example, a

simple window (code omitted) is created with: a heading label, StringVar, label

for the StringVar, and a button. The StringVar is changed each time the button is

clicked using the command self.change_text.

Ex. 10.1 – StringVar modified from a button click.

self.num = 1 # variable used by the function

self.heading_label = tk.Label(self.main_window, text='StringVar Demo', \

 font=("Helvetica",16))

self.heading_label.grid(row=0,rowspan=2, column=1)

Label with StringVar

self.sVar = tk.StringVar() # StringVar

self.sVar.set('First')

self.changing_label = tk.Label(textvariable=self.sVar, font=(‘Tahoma’,10))

self.changing_label.grid(row=2,column=1)

self.change_button = tk.Button(text='Change', \

 width=16, font=("Helvetica",10),\

 command=self.change_text) # command

self.change_button.grid(row=3,column=1)

Enter the tkinter main loop

tk.mainloop()

82

Chapter 10 Remove or Modify Controls

When the button is clicked, the command calls the function and changes the

StringVar using the set method. To toggle the changed text for the example, the

variable num is reassigned each time. Note that the button text is also changed

each time using config.

 def change_text(self):

 if self.num == 1:

 self.sVar.set('Second')

 self.change_button.config(text='Change Back')

 self.num = 2

 else:

 self.sVar.set('First')

 self.change_button.config(text='Change')

 self.num = 1

In addition to the StringVar, destroying, forgetting, and removing controls

allows modification to existing GUI controls instead of creating a completely

new windows.

83

Chapter 11 The Main Interface GUI

Chapter 11

Main Interface GUI

Design is the first step to developing the main interface. The user will interact

with the program through this GUI and ease-of-use, intuitive controls, and

descriptive labels are necessary. The controls to be used on the main GUI depend

on what the program does and user interaction. A few buttons may be adequate

or the program may require a more complex layout. Button clusters can be used

to allow multiple selections and radio buttons and drop-down menus are

mutually exclusive requiring the user to select just one. These considerations

during the design phase will save the time spent redesigning or reconfiguring an

inadequate or problem interface.

The interface layout should be designed in conjunction with the operational

design. Storyboarding, pseudo-code, and flowcharts used during design will

show issues that can be corrected early in the process. Software engineers often

overlook essential aspects of the interface since they know what the program

does, how it functions, and the inputs required. The Agile process typically

involves stakeholder reviews and in some cases the client or customer is

involved. This provides an opportunity for people not familiar with the planned

design and operation of the program to offer suggestions for improvement. It

also eliminates surprises when the final product is delivered.

Several examples of interfaces for other projects are shown here.

84

Chapter 11 The Main Interface GUI

The Option Lists in this example provide the selection input and the image

corresponds to the option-list choices. The purchase button is not enabled until a

seat selection has been made.

A button cluster is shown in this example for the user selection. In addition,

there is an image corresponding to the choices, and a purchase button

85

Chapter 11 The Main Interface GUI

In the following example, only buttons are used and they are enabled and

disabled to prevent errors. For example, a frequency cannot be played or plotted

if one has not been entered or selected.

.

This example uses radio buttons and check boxes for selection.

86

Chapter 11 The Main Interface GUI

The same design tools that were used for the initial window can be employed

including the row and column sketch for placement of the controls and image(s).

The configure option can then be used to set the rows and columns as needed to

accommodate the elements of the window.

The next chapter covers control examples including those shown above.

87

Chapter 12 Menus and Button Groups

Chapter 12

Menus and Button Groups

User selection of operations is often best handled with a control to eliminate

typing errors and to reduce input validation requirements. The pull-down

menus and button groups shown in chapter 11 provide interaction with the user

while preventing errors. The implementation of those elements and placements

in the window using a grid are handled much the same way as the Label controls

covered in earlier chapters. One exception is the drop-down or window menu.

Drop-down (window) Menu

A drop-down or window menu can provide program-level operations. The

menu rests on the window frame, and drops down to reveal the options.

Drop-down Menu

88

Chapter 12 Menus and Button Groups

The Python drop-down is created using Menu(). The items listed on the menu are

added using add_command and a function to respond to the selection. There is a

separator that can be added between selections, and “tearoff” allows the menu to

actually be pulled away from the border (set to zero below which turns off that

feature).

Ex. 12.1 – Drop-down Menu.

class DemoGUI:

 def __init__(self):

 self.main_win = tk.Tk()

 self.main_win.title("Demonstrating Menu")

 self.main_win.minsize(width=350,height=180)

 self.menubar = Menu()

 self.filemenu = Menu(self.menubar, tearoff=0) # tearoff option

 self.filemenu.add_command(label="New", command=self.temp)

 self.filemenu.add_command(label="Open", command=self.temp)

 self.filemenu.add_command(label="Save", command=self.temp)

 self.filemenu.add_command(label="Save as...", command=self.temp)

 self.filemenu.add_command(label="Close", command=self.temp)

 self.filemenu.add_separator()

 self.filemenu.add_command(label="Exit", command=self.main_win.destroy)

 self.menubar.add_cascade(label="File", menu=self.filemenu)

 _

 _ # Other code here

 _

 _

 self.main_win.config(menu=self.menubar)

 tk.mainloop()

 def temp(self):

 print("Menu item selected.")

demo = DemoGUI()

89

Chapter 12 Menus and Button Groups

Changing the tearoff assignment to 10 instead of zero places a dotted line on the

drop-down menu. This can be used to “tear off” the menu by clicking on the

dotted line and dragging the menu to another location.

self.filemenu = Menu(self.menubar, tearoff=10)

Option List

An option list allows locating a list of selectable options anywhere using grid.

Option List

90

Chapter 12 Menus and Button Groups

Ex. 12.2 – Option List

class DemoGUI:

 def __init__(self):

 self.main_win = tk.Tk()

 self.main_win.title("Demonstrating Menu")

 self.main_win.minsize(width=350,height=180)

 self.main_win.rowconfigure(0, minsize = 50)

 self.main_win.rowconfigure(2, minsize = 150)

 self.main_win.columnconfigure(0, minsize=50)

 optionList = ('Option 1', 'Option 2', 'Option 3', 'Option 4', 'Option 5')

 self.option_var = tk.StringVar()

 self.option_var.set('Option Selection')

 self.option_menu = tk.OptionMenu(self.main_win,\

 self.option_var, *optionList)

 self.option_menu.grid(row=1, column=1)

 tk.mainloop()

create an instance of the class

demo = DemoGUI()

To obtain the selection from the user, a command is linked to the option list.

 self.option_menu = tk.OptionMenu(self.main_win, self.option_var, \

 *optionList, command = list_changed)

The function called will need to receive the arguments and use the get method to

obtain the selection.

 # on change drop-down value

 def list_changed(self, *args):

 print(self.option_var.get())

91

Chapter 12 Menus and Button Groups

In the next example, the “room” option list is disabled until a “floor” is selected.

The “trace” attribute calls “get_floor_info” when the option list changes.

Ex. 12.2A – Option Lists – enable/disable call functions

 floorOptionList = ('Ground Floor', 'Second Floor', 'Third Floor')

 self.floorOption_var = tk.StringVar()

 self.floorOption_var.set('Select Floor')

 self.floorOption_menu = tk.OptionMenu(self.main_win,

 self.floorOption_var, *floorOptionList)

 self.floorOption_menu.grid(row = 1, column = 1)

 self.floorOption_var.trace('w',self.get_floor_info)

 roomOptionList = ('King Room ', 'Twin Room ', ' Deluxe King Room ', \

 'Corner King Room ', 'Corner Suite ')

 self.roomOption_var = tk.StringVar()

 self.roomOption_var.set('Select Room')

 self.roomOption_menu = tk.OptionMenu(self.main_win,

 self.roomOption_var, *roomOptionList)

 self.roomOption_menu.grid(row = 3, column = 1)

 self.roomOption_menu.config(width=18, state='disabled')

The “get_floor_info” function activates the “room” option list (note the

parameters). A print statement will show what they are.

 def get_floor_info(self, a, b, c):

 print('a is ' +str(a) + ' and b is ' + str(b) + 'and c is ' + str(c))

 floorSelect = self.floorOption_var.get()

 if floorSelect == 'Select Floor':

 tk.messagebox.showinfo('Invalid floor','Please select a floor.')

 else:

 self.roomOption_menu.config(state='active')

The “Select” button calls “get_room_info”.

 self.select_button = tk.Button(self.main_win, text = 'Reserve',

 width=16, font=('Helvetica',14), command=self.get_room_info)

 self.select_button.grid(row=5, column=1)

def get_room_info(self):

 roomSelect = self.roomOption_var.get()

 print('The room was ' + roomSelect)

92

Chapter 12 Menus and Button Groups

 Button Groups and Clusters

Groups of buttons are often preferred to lists. The example below creates a group

of six buttons on a label frame that has a sunken border. The buttons are created

from a list and are positioned using a loop as opposed to individually placed.

Ex. 12.3 – Button Group.

 self.lf = tk.LabelFrame(text = "Choose a button.", padx=6, pady=16,\

 bd=4, relief= SUNKEN)

 self.lf.grid(row= 1, rowspan=4, column = 1, columnspan=4)

 btn_list=['B #1', 'B #2', 'B #3', 'B #4', 'B #5', 'B #6']

 keyRow = 0

 keyCol = 0

 index = 0

 button_num = "" # empty string for button number

 btn = list(range(len(btn_list)))

 for button_num in btn_list: # start of for loop

 cmd = lambda btn_num = button_num: self.button_clicked(btn_num)

 # create the button

 btn[index] = tk.Button(self.lf, text= button_num, font=("Helvetica",10), \

 height= 2, width=5, bd=3, command=cmd)

 # position the buttons

 btn[index].grid(row= keyRow, column= keyCol)

 index = index + 1 # increment button index and row

 keyCol = keyCol + 1

 if keyCol > 2:

 keyCol = 0

 keyRow = keyRow + 1

93

Chapter 12 Menus and Button Groups

The label frame used in the example has a SUNKEN appearance using the relief

option. The buttons are arranged using the loop and rows/column variables. The

list of buttons is stored in btn and the index is used to access the individual

buttons.

Button Group

The command for the buttons is assigned cmd which is a lambda that calls the

button_clicked function passing it the text on the button.

 def button_clicked(self, btn_num):

 print("the key is " + str(btn_num))

Lambda Expressions

A lambda expression is an inline function with no name. In Python, the keyword

lambda or def can be used along with or without a name. The two lines below

accomplish the same thing.

def square_root(x): return math.sqrt(x)

square_root = lambda x: math.sqrt(x)

94

Chapter 12 Menus and Button Groups

Lambda expressions are not necessary, but can make writing the code easier.

When a function is simple and is called only once, a lambda expression makes

sense. It can be anonymous (no name) and defined where it will execute.

One frequent use of a lambda is in programming “callbacks” (explained later) to

GUI frameworks such as Tkinter and wxPython. A situation to use a lambda is

the command assigned to a button. A tk.Button requires a function object to be

assigned to the command. A way of handling this is to have the command be a

call to a function and then to have that function perform the operation.

Ex. 12.4 – Button Command for Print Function

self.new_button1 = tk.Button(text='Button 1', width=16, font=("Arial",10),\

 command=self.on_click)

def on_click(self):

 print(‘Button selected’)

In the above example, the print command cannot be assigned directly to the

button. The command must call the function on_click which then handles the

print function. Using a lambda function would eliminate the call to the function

as shown below.

Ex. 12.4A – Lambda Button Command

self.new_button2 = tk.Button(text='Button 2', width=16, font=("Arial",10),\

 command=lambda : print(‘Lambda !’)

Combining the two buttons and the function into a single program shows that

both versions operate the same way.

Function/Lambda Example

95

Chapter 12 Menus and Button Groups

When a GUI program uses this type of code, the button object is said to “call back” to

the function object that was supplied to it as it’s’ command.

Radio Buttons

Very often the design or operation of the program requires that only one

selection be made by the user. Radio buttons are a great solution to this problem.

They are mutually exclusive, and when a button is checked the button that was

previously checked is unchecked. The value assigned to the button can be

captured and used. The options for radio buttons are similar to other controls

including text and fonts, and they are located using grid locations. The code

below uses radio_var to store the value from the radio buttons. Note that both

buttons are assigned the same variable radio_var, but are assigned a different

integer in value. After a selection is made, the user clicks on the Display Data

button that has a command that calls rad_react which obtains the value of the

selected radio button using get(). To use them, import from tkinter import *.

Ex. 12.5 – Radio Buttons (note: portions of the code is omitted)

self.radio_var = tk.StringVar() # to store the radio button selection

self.radio_var.set('1') # the default button selected

 # barometric pressure radio button

self.baro_press = tk.Radiobutton(text = " Barometric pressure",\

 font=("Arial",12), variable=self.radio_var, value='1')

self.baro_press.grid(row=3, column=1, sticky=W)

 # wind speed radio button

self.wind_spd = tk.Radiobutton(text = " Wind speed", \

 font=("Arial",12), variable=self.radio_var, value='2')

self.barowind_spd.grid(row=5, column=1, sticky=W)

self.display_data_button = tk.Button(text='Display Data', width=18, \

 font=("Helvetica",12), command = self.rad_react)

self.display_data_button.grid(row=11,column=1)

96

Chapter 12 Menus and Button Groups

The function below is called by the button to obtain the number assigned to the

selected radio button.

def rad_react(self): # function called by the button

 print('Button selected is ' + str(self.radio_var.get()))

Ex. 12.5 Radio Button Example

Selecting each of the radio buttons produces the following output with the

number of the radio button.

Ex. 12.5 Radio Button Example Output

97

Chapter 13 Date and Time

Chapter 13

Date and Time

Time values in Python are handled using the Time class with attributes for hour,

minute, second, and microsecond. There are also multiple optional arguments for

an instance of the time object to set a clock in a program. Obtaining the current

date and time is straight forward.

Ex. 13.1 – Time Example

print ("Current date and time: " , datetime.date.time.now())

tm = datetime.date.time.now()

print('hour : ', tm.hour)

print('minute:', tm.minute)

print('second:', tm.second)

print('microsecond:', tm.microsecond)

The output for Ex. 13.1 on September 26, 2020 at 8:01 PM is:

Current date and time: 2020-09-26 20:01:04.665855

2020-09-26 20:01:04.681455

hour : 20

minute: 1

second: 4

microsecond: 681455

98

Chapter 13 Date and Time

The date and time information can also be stored in a tuple, which allows

extraction of the individual pieces as needed.

Ex. 13.2 – Time Tuple Example

tm = datetime.date.time.now()

print ("Tuple: " , tm.tuple())

The output for Ex. 13.2 on September 26, 2020 at 8:11 PM is:

Tuple: time.struct_time(tm_year=2020, tm_mon=9, tm_mday=26,

tm_hour=20, tm_min=11, tm_sec=1, tm_wday=3, tm_yday=269, tm_isdst=-1)

Calendar dates are handled using the date class with attributes for year, month,

and day. To obtain the current date, the today() class method is used.

Ex. 13.3 – Date Example

dm = datetime.date.today()

print(dm)

print('today: ', dm.day)

print('month: ', dm.month)

print('year: ', dm.year)

print ('tuple:', dm.timetuple())

ts = dm.timetuple()

print(‘The day is: ‘, ts[2])

The output from Ex. 13.3 on September 28, 2020 at 6:30 PM is:

Current date and time: 2020-09-28 18:30:22.284823

2020-09-28

today: 28

month: 9

year: 2020

tuple: time.struct_time(tm_year=2020, tm_mon=9, tm_mday=28,

tm_hour=0, tm_min=0, tm_sec=0, tm_wday=5, tm_yday=271, tm_isdst=-1)

The day is: 28

99

Chapter 13 Date and Time

Calendar

Python has a calendar module that provides various calendars and options for

displaying and using them. The module includes a TextCalendar for real text and

HTML for special formatting.

The following code prints a calendar for the month of September. Notice that the

start day must be set in order for the first day to be Sunday. The default is

Monday which is a European convention.

Ex. 13.4 – Display a Calendar of One Month

yy = 2021

mm = 7

calendar.setfirstweekday(calendar.SUNDAY) # all uppercase

print(calendar.month(yy,mm))

Ex. 13.4 Month Calendar Output

To display an entire year, the month attribute is omitted.

Ex. 13.4A – Display a Calendar for the Year

yy = 2021

calendar.setfirstweekday(calendar.SUNDAY)

print('\n\n')

print(calendar.calendar(yy))

100

Chapter 13 Date and Time

Ex. 13.4A Year Calendar Output

There are many methods associated with calendars including day_name, day_abbr,

month_name, and month_abbr.

In addition, tkcalendar is a python module that provides the Calendar and

DateEntry controls for Tkinter. The DateEntry control is similar to a Combobox,

but the drop-down is not a list but a Calendar to select a date.

tkcalendar Display

101

Chapter 14 Displaying Data

Chapter 14

Displaying Data

Many GUI programs display data to the user. This can be handled much like file

writing in Python. There are two situations to consider; handling output to a

display as the user enters data for a computation, and reading data from a file to

display.

The examples below use a program that computes a loan payment based on a

user’s input of the loan amount, interest rate, and duration of the loan. Entry

controls on the main window obtain the user input and a button click calls a

compute function to compute the monthly payment amount. A StringVar is used

to update the output label for the monthly payment amount on the main

window. The second display of a computation history will be addressed later in

the example.

StringVar Code

self.pymt_var = tk.StringVar()

self.payment_label=tk.Label(textvariable=self.pymt_var,\

 font=("Arial",12))

self.payment_label.grid(row=6,column=2,sticky=W)

self.pymt_var.set('The monthly payment is: ')

102

Chapter 14 Displaying Data

Ex. 14.1 – Loan Payment Example

Loan Payment Example

The payment amount is displayed on the main window by modifying the

StringVar in the function. A change to the StringVar using set() automatically

updates the label.

 # Updating a stringvar

 new_str = 'The monthly payment is: $' + str(format(mp,'.2f'))

 self.pymt_var.set(new_str) # update the stringvar

The history of loan computations will be displayed in a second window. This

window will not be a user interface, but simply, a display window of the text.

The “Display Data” button on the GUI will create the second window.

Before continuing, it is useful to include a further explanation of object creation

and the particulars of self/root/master (interchangeable names) and what is

passed to and received by the _ _init_ _ method. In the init method, self refers to

the new object, but in other class methods, it refers to the object instance of the

method called. This will be further explained in the next section.

103

Chapter 14 Displaying Data

Window Interaction

To demonstrate object interaction and what is actually passed into and received

by the _ _init_ _ method, the following example creates a main window and then

a second window using two classes. The main window will create an instance of

the second window and then modify what is displayed in the second window.

Ex. 14.2 – Main Window

from tkinter import * # imports everything from the tkinter module

import tkinter as tk # imports tkinter as tk

class MainGUI:

 def __init__(self):

 self.main_win = tk.Tk() # create the main window

 self.main_win.title("The First Window")

 self.main_win.minsize(width=400,height=200) # window size

 self.heading_label = tk.Label(self.main_win, text='First Win', \

 font=("Helvetica",16), fg="blue")

 self.heading_label.grid(row=1,rowspan=2,\

 column=3, columnspan=2)

 self.print_button = tk.Button(text='Print', width=12,\

 font=("Helvetica",10), command=self.output)

 self.print_button.grid(row=3,column=1, columnspan=2)

 print('In main and self is: ', str(self))

 tk.mainloop() # enter the tkinter main loop

 def output(self):

 print ('Self is now: ', str(self))

FirstWin = MainGUI() # create an instance of the class

104

Chapter 14 Displaying Data

In the code in Ex. 14.2, an instance of the class MainGUI is created as “FirstWin”

by the assignment statement (last line of the program) FirstWin = MainGUI().

The window has a heading label and button labeled “Print” that will be used to

call the function below the main loop def output(self). There is also a print

statement above the main loop. Notice first that the command does not pass any

arguments, yet the output function receives one. This is the implicit passing of

self in Python.

When the program runs, the output of self in the initialization and the output

produced by clicking the “Print” button are the same hexadecimal memory

address.

In main and self is: <__main__.MainGUI object at 0x03BE2330>

Self is now: <__main__.MainGUI object at 0x03BE2330>

Ex. 14.2 Output

The second window will be created using a second button on the main GUI, and

the command for the button will call the function second_win as shown below. A

few additions including configure loops as shown here, were made to the

program for convenience.

Ex. 14.3 – Additions to the MainGUI class to add a second button and function

for r in range(6): # configure loops

 self.main_win.rowconfigure(r, minsize=10)

for c in range(6):

 self.main_win.columnconfigure(c, minsize=40)

self.second_win_button = tk.Button(text='Second Win', width=12,\

 font=("Helvetica",10), command=self.second_win)

self.second_win_button.grid(row=3,column=5, columnspan=2)

New function added

def second_win(self):

 print('In second_win function and self is: ', str(self))

105

Chapter 14 Displaying Data

Ex. 14.3 MainGUI Window

When the program runs and the “Print” and “Second Win” buttons are clicked,

we see the same memory location for self. The output shows self in the main loop

and it is passed to each of the functions.

Ex. 14.3 Output

Next, a new window will be created from the call to second_win, and self will not

be implicitly passed. If the new window were created in a main function, Toplevel

would be used to assign the parent window: – sd_win = tk.Toplevel(self).

Ex. 14.4 – Modifications to the MainGUI class to create a second window.

class SecondWin:

 def _ _init_ _(sd_win):

 print('In the second window and sd_win is: ', str(sd_win))

 sd_win = tk.Tk()

 sd_win.title('Second Window')

 sd_win.minsize(width=400,height=400)

 sd_win.configure(bg='white')

 sd_win.rowconfigure(0,minsize=100)

106

Chapter 14 Displaying Data

 sd_win.header= tk.Label(sd_win, text='Second Window',\

 font=('Helvetica',11))

 sd_win.header.grid(row =0,column=1,columnspan=4)

The change to the MainGUI class is the addition of the second_win function which

creates the second window.

 def second_win(self):

 print('In second_win function and self is: ', str(self))

 SecondWin = second_win.SecondWin()

When the program runs, and each of the buttons is clicked, the output shows the

values of self and sd_win and the window is created.

Notice the memory location for sd_win is different from the others. When an

object is created, the name assigned is bound to the object. This means that if we

were to add another line to MainGUI in the function second_win (which creates

the object), we should see the same memory as sd_win when it is created.

 def second_win(self):

 print('In second_win function and self is: ', str(self))

 SecondWin = second_win.SecondWin()

 print('SecondWin is: ', str(SecondWin))

Ex. 14.4 Output

107

Chapter 14 Displaying Data

When the object is created, memory is allocated and the name SecondWin is

bound to the object. Printing SecondWin displays the same location as sd_win.

All of this helps to clear up the confusion associated with self/root/master. The

second window could have just as easily used the name self as it did sd_win. The

idea is that a declaration like sd_win.header is stating that the label control is to be

associated with and located on the sd_win window. The label belongs to sd_win.

 sd_win.header= tk.Label(sd_win, text='Second Window',\

 font=('Helvetica',11))

The next step for data display requires that the main window send updates to the

second window. Implementing this step will make things even clearer.

Back to the Project

The project so far has a main GUI that responds to input and updates a StringVar

on the main GUI with a computed value. At this point, the “Display Data”

button is disabled. It will first need to create the second window and then be

updated as the user enters additional input for computed values.

Loan Payment Example

108

Chapter 14 Displaying Data

The code below is for the Data Display window that will be created by the main

window when the button is clicked. Recall that self will be passed implicitly to

the function, but will not be used to create an object of the second window class.

Ex. 14.5 – Data Display Window

class DataDisplay:

 def __init__(sWin):

 sWin.dd_win = tk.Tk()

 sWin.dd_win.title('Loan Calculation History')

 sWin.dd_win.minsize(width=400,height=400)

 sWin.dd_win.configure(bg='white')

 sWin.dd_win.rowconfigure(0,minsize=50)

 # columns for Amount Interest Duration Payment

 for c in range(6):

 sWin.dd_win.columnconfigure(c, minsize=50)

 for r in range(1,10):

 sWin.dd_win.rowconfigure(r, minsize=15)

 # labels for Amount Interest Duration Payment

 sWin.dd_win.amount= tk.Label(sWin.dd_win, width=10, \

 text=' Amount', bg='white', font=('Helvetica',11))

 sWin.dd_win.header.grid(row=0,column=1)

The modifications to the main window code include: adding the command to the

“Display Data” button, adding a flag as an indicator of whether or not the

display window is open, modifying the compute_loan function to update the

display window, if it is open, and writing the function that will create the data

display window and then disable the button. Ex. 14.6 shows these changes.

109

Chapter 14 Displaying Data

Ex. 14.6 – Data Display Window Modifications

self.display_data_button = tk.Button(text='Display Data', width=16,\

 font=("Helvetica",10), command=self.display_data)

self.display_data_button.grid(row=8,column=1, columnspan=2)

self.display_win_open = False # flag for display window

def compute_loan(self): # compute_loan changes

 amt = self.amt_entry.get()

_

_

_

 if self.display_win_open == True: # flag for the display

 # Call display_data

def display_data(self): # function to create the window

self.DisplayDataWin = display_data_win.DataDisplay()

self.display_data_button.config(state='disabled')

self.display_win_open = True # flip the flag

The creation of the window is the creation of an object of the DataDisplay class in

a file called display_data_win.py and it is assigned to self.DataDisplayWin. When an

object is created, it does not know about other objects unless it is told about other

objects. In this case, the second window is created as an attribute of self, so that

there is access to the window to perform updates to the display. The solution

requires slight modifications to multiple parts of the program. Step-by-step

design and walking through the process before adding the code helps to reduce

omitted changes and saves time debugging the program.

The pseudo-code below walks through the steps for adding the display window.

Notice the additional items included for Step 2. A flowchart could also surface

steps that might otherwise be overlooked.

110

Chapter 14 Displaying Data

Display Data button click in pseudo-code:

Step 1. The user clicks “Display Data”

Step 2. The second window is created

– The “Display Data” button is disabled

– The display_win_open flag is set to True

Step 3. The user clicks the “Compute” button

Step 4. The display_data function is called

There are a few different design solutions that could be used to display the data

in the second window. The solution chosen here creates a new label for each data

item and adds it to the second window, incrementing the column and row. Since

there is a “handle” to the window through self, a label can be created and a grid

location can be assigned from the display_data function.

Ex. 14.7 – Updating the Data Display Window

self.row_count = 2 # added to main to be used for grid

def display_data(self): # modifications to display_data

 if self.display_win_open == False:

 self.DisplayWin = display_data_win.DataDisplay()

 self.display_win_open = True

 self.display_data_button.config(state='disabled')

 else:

 fltA = float(self.amt) # convert the values to float

 fltI = float(self.intst)

 intD = int(self.dur) # convert to integer

 fltMP = float(self.mp)

 self.DisplayWin.dd_win.amt_lbl = tk.Label(self.DisplayWin.dd_win,\

 font=('Helvetica',10), bg='white', \

 text= '$' + str(format(fltA, '10.2f')))

 self.DisplayWin.dd_win.amt_lbl.grid(row=self.row_count,column=1)

111

Chapter 14 Displaying Data

A new variable is added to the class called row_count to be used for grid

placement of the labels in the second window. It is incremented each time the

function is called. The display_data function is modified to include an else clause

to do the updating. The values are converted in order to format them properly,

and then they are converted back to strings for display as shown here.

fltA = float(self.amt) # convert to float

text= '$' + str(format(fltA, '10.2f')) # format and convert to string

Each time the “Compute Loan” button is clicked, the display updates with the

new values by creating a label with the text and placing it on the grid in a new

row.

Ex. 14.7 Display Output

File Data Display

Reading data from a file and displaying it could be handled in a similar way. For

example, assume that there is a data file containing a data set that would be

displayed in five columns. A loop will read from the file and display the data by

creating the labels as the values are read. They could also be read into a list or

tuple and again a loop would be used to create the labels. Since the data in this

case is not used in a computation, a single loop creation can be used and a

row/column algorithm can be used for the grid placement.

112

Chapter 14 Displaying Data

Ex. 14.8 – Updating the Data Display Window from a file.

 for value in inFile:

 fltVal = float(value)

 self.DisplayWin.dd_win.data_lbl = tk.Label(self.DisplayWin.dd_win,\

 font=('Helvetica',10), bg='white', text= str(format(fltVal, '10.2f'))) \

.grid(row=self.r_count,column=self.c_count)

 self.col_count = self.c_count + 1

 if self.col_count == 6:

 self.col_count = 1

 self.row_count = self.r_count + 1

Ex. 14.8 Display Output

Formatting Data

In addition to the format specifiers shown previously, Python has introduced a new

version that is often simpler to use. The formatting is surrounded by braces.

113

Chapter 14 Displaying Data

Plotting Data

Data can also be plotted to a display window by drawing on a canvas control.

The following example computes a fahrenheit temperature from a Celsius input

and plots both values in a separate display. The GUI code for the window and

controls is omitted. The function convert plots the values to a canvas using x,y

coordinates as the first arguments to create_text and create_oval, and changes the

color for each to blue for the negative values.

Ex. 14.9 – Plotting using a Canvas.

def convert(self):

 self.celsius = float(self.celsius_entry.get())

 # Calculate Fahrenheit

 self.fahrenheit = round((9.0 /5.0 * float(self.celsius)) + 32, 2)

 self.fahr.set(self.fahrenheit) # Update the fahrenheit_label

 color = 'black' # determine the text color

 if self.fahrenheit < 0:

 color = 'blue'

 # populate the canvas with the value

 self.canvas.create_text(180 + self.celsius*5, 300-self.fahrenheit, \

 fill=color, text= str(self.fahrenheit)+ ' F')

 # draw the oval

 self.canvas.create_oval(180 + self.celsius*5, 310-self.fahrenheit, \

 185 + self.celsius*5, 315-self.fahrenheit, fill = color)

114

Chapter 14 Displaying Data

 color = 'black'

 if self.celsius < 0:

 color = 'blue'

 # populate the canvas with the value

 self.canvas.create_text(180 + self.celsius*5, 400-self.celsius, \

 fill = color, text=str(self.celsius)+ ' C')

 self.canvas.create_oval(180 + self.celsius*5, 410-self.celsius, \

 185 + self.celsius*5, 415-self.celsius, fill = color)

The program displays the text and marker as the button is clicked.

Ex. 14.9 Plotting Output

Another Python module for plotting data is matplotlib. The matplotlib library is

extensive and can be used to generate plots, histograms, bar charts, scatterplots,

and more. Chapter 15 includes an example using matplotlib.

115

Chapter 15 Python Modules

Chapter 15

Python Modules

One of the benefits to programming in Python is the extensive list of modules

that have been developed over the years. A Python library is a collection of

functions and methods that can be imported and used without development. As

an example, the Python imaging library (PIL), can be used for manipulating

images. For real-time vision and image processing, the library Open-CV, which

also binds to C++, C#, and others, can be imported.

The number of libraries is too extensive to list, but Python developers seem to

agree on a few that require mentioning. In alphabetical order:

Beautiful Soup - XML and HTML parsing library

Bokeh - support large-scale interactivity and visualizations of real-time data sets

Karas - neural networks API, supports deep learning

NLTK - language processing, string manipulation

Nose - testing framework for Python

Numpy - math functions

matplotlib - data visualization, a numerical plotting library (example below)

Pandas - data manipulation and analysis

Pillow - imaging library

Plotly - publication-quality plots and graphs, finance and geospatial industries

116

Chapter 15 Python Modules

Pygame – 2D game development

Pyglet – 3D animation and game creation engine

pyGtk - Python GUI library

pyQT - GUI development

PyTorch - neural network modeling library with GUI

pywin32 - interaction with Windows

IPython - shell for Python

Requests - HTTP library

Sympy - algebraic evaluation, complex numbers, differentiation

Scrapy - extract data and a web crawler

SciPy - algorithm and mathematical tools, signal processing, optimization and

statistics

Scikit-learn - machine learning and data mining

SpaCy - large scale extracting/analysis of textual information; Supports deep learning

SQLAlchemy - database library

Tensorflow - machine learning and deep learning

Twisted - networking applications development

wxPython - GUI toolkit

Plotting with Matplotlib

The matplotlib library module pyplot provides functionality to generate line, bar,

and pie charts in an auto-scaling resizable window. The next example uses

matplotlib to generate a line graph of sales data that has been read in from a file.

The data is stored in a list and is passed to a function called plot_mylist which sets

up the window, the chart, and it also plots the data. Note the import statement

for pyplot requires the library and dot.

import matplotlib.pyplot as plt

There are many options available for customizing the charts including: axis

labels, tick marks, data markers, the width of bars, and slice labels for pie charts.

The next example uses a few of these.

117

Chapter 15 Python Modules

The function plot_mylist shown below first establishes the number of data points

for each axis using x_coords and y_coords. The number of x-axis tick marks is

established from the number of coordinates in the list. The number of y-axis tick

marks and their values are established by the values in the sales_list data. The call

to plt.plot actually builds the graph in memory, and it is then displayed when

plt.show() is called.

Ex. 15.1 – Initial Line Graph of Sales Data using pyplot

def plot_mylist(sales_list):

 x_coords = [0,1,2,3,4,5,6,7,8,9,10,11]

 y_coords = sales_list

 plt.plot(x_coords, y_coords)

 plt.show()

Ex. 15.1 Initial Pyplot Output

The data is plotted and the window has many features included in the lower left-

hand corner for zooming in a rectangular shape, saving the image, and others.

118

Chapter 15 Python Modules

The graph is complete, but it is missing information that would clarify what is

being displayed. Some of the additional features of pyplot include axis labels,

tick mark labels, and a title for the chart.

Ex. 15.2 – Line Graph of Sales Data Enhanced

def plot_mylist(sales_list):

 x_coords = [0,1,2,3,4,5,6,7,8,9,10,11]

 y_coords = sales_list

 plt.xticks([0,1,2,3,4,5,6,7,8,9,10,11], ['Jan', 'Feb', 'Mar', 'Apr', 'May',

 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])

 plt.title('Cumulative Sales Data 2018')

 plt.ylabel('Sales in Thousands')

 plt.xlabel('Months')

 plt.plot(x_coords, y_coords)

 plt.show()

Ex. 15.2 Pyplot Output

119

Chapter 15 Python Modules

Other enhancements might include changing the window title on the title bar,

adding shapes to the data points, and adding a background grid to the chart.

Ex. 15.3 – Line Graph of Sales Data Complete

def plot_mylist(sales_list):

 x_coords = [0,1,2,3,4,5,6,7,8,9,10,11]

 y_coords = sales_list

 plt.xticks([0,1,2,3,4,5,6,7,8,9,10,11], ['Jan', 'Feb', 'Mar', 'Apr', 'May',

 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])

 fig = plt.gcf() # get current figure

 fig.canvas.set_window_title('Business Report')

 plt.title('Cumulative Sales Data 2018')

 plt.ylabel('Sales in Thousands')

 plt.xlabel('Months')

 plt.grid(True) # grid background

 plt.plot(x_coords, y_coords,marker='o') # data point markers

 plt.show()

Ex. 15.2 Pyplot Output

120

Chapter 15 Python Modules

Modules, like pyplot, are easy to use and provide extensive functionality. To

generate the sales data chart and resizable chart window only required eleven

lines of code.

121

Chapter 16 File Dialogs, HTML, and Animation

Chapter 16

File Dialogs, HTML, and Animation

This chapter contains additional features and functionality in Python including;

producing sound, animation, opening a browser, and creating a file open dialog.

In many cases, the key is determining the module to use and the options

available. There is also the confusion created by changes in the language such as

the fact that Python 3.0 is not backward compatible, and there is a great deal of

information available that does not specify the version of Python being used.

File Dialogs

As an example, an Open File dialog is available in Python 2 (Ex. 16.1A), but does

not work correctly in Python 3.0. The example in Ex. 16.1A does.

Ex. 16.1 – Open File Dialog Example – Python 2

import Tkinter, tkFileDialog

self = Tkinter.Tk()

self.withdraw() # hide the root window

file_path = tkFileDialog.askopenfilename()

122

Chapter 16 File Dialogs, HTML, and Animation

Compare the module imported and the code in the lines above to those below.

Ex. 16.1A – Open File Dialog Example – Python 3.9.0.

import tkinter as tk

from tkinter import filedialog

self = tk.Tk()

self.withdraw() # hide the root window

file_path = filedialog.askopenfilename(title=’Choose a File’)

The self or root window is withdrawn in this program so that only the dialog

appears and the default directory is the directory where the program is running.

Ex. 16.1A Open File Dialog

To create a Save As dialog, a change to one line of code is necessary.

file_save = filedialog.asksaveasfilename()

To predetermine file types, a list of types with descriptions is created and is

passed to the dialog which is used in the drop-down list as shown below.

123

Chapter 16 File Dialogs, HTML, and Animation

The example below creates a list of image file types with descriptions for the

dialog.

Ex. 16.2 – Save As Dialog with File Types

myFormats = [('Windows Bitmap','*.bmp'),

 ('Portable Network Graphics','*.png'),

 ('JPEG / JFIF','*.jpg'), ('CompuServer GIF','*.gif'),]

file_types= filedialog.asksaveasfilename(filetypes= myFormats,

 title = 'Save image as...')

Ex. 16.2 Save As Dialog with File Types

HTML and Browsers

Browsers read *.html files and Python can be used to create the html file and then

launch the browser with the file. In the following example, the Python program

creates a file. The program then writes some standard HTML to the file, closes it,

and then launches a browser with the file.

124

Chapter 16 File Dialogs, HTML, and Animation

Note the import statement for webbrowser and that the HTML to be written to the

file is surrounded by triple quotes and assigned to message.

Ex. 16.3 – Create an HTML File and Launch a Browser

import webbrowser

f = open('my_html_file.html','w')

message = """<html>

<head>This is my HTML file</head>

<body><p>HTML File created by Program Ex. 16.3</p></body>

</html>"""

f.write(message)

f.close()

webbrowser.open_new_tab('my_html_file.html')

Ex. 16.3 Web Page created by Python program

This simple example of creating HTML and launching a browser can be

augmented extensively to create complex web pages including updates and the

use of variables.

125

Chapter 16 File Dialogs, HTML, and Animation

Animation

Python can be used to generate animation by creating a series of frames and

assembling them with makeMovieFromInitialFile similar to the way an MPEG

file is merged into a sequence of images. Matplotlib’s animation class also

provides this capability with FuncAnimation, which repeatedly calls a function.

Using it requires importing the numpy module and matplotlib’s animation

module.

The FuncAnimation interface accepts arguments for:

fig - the Figure Object used

func - the callable function at each frame

frames – source of data to pass to func for each call (number of frames)

init_func – used to draw a clear frame (optional)

fargs - tuple or none (additional callable function arguments) (optional)

save_count - number of frames to cache (optional)

interval - number (optional), the delay between frames in milliseconds

repeat_delay - number in milliseconds (optional) between repeats

repeat - boolean (optional), should the animation repeat

blit – boolean for blitting to optimize drawing to reduce time

cache_time_data – boolean for whether frame data is cached

Ex. 16.4 – Carrier Wave Animation. 94.4 MHz

1. import numpy as np

2. from matplotlib import pyplot as plt

3. from matplotlib import animation

4.

5. fig = plt.figure()

6. fig.canvas.set_window_title('Carrier Wave Analysis')

Lines 1 thru 3 import numpy, pyplot, and animation

Line 5 creates the figure window for display and line 6 sets the window title

126

Chapter 16 File Dialogs, HTML, and Animation

7. thismanager= plt.get_current_fig_manager()

8. img = PhotoImage(file='Radio.gif')

9. thismanager.window.tk.call('wm', 'iconphoto', \

 thismanager.window._w, img)

Line 7 gets a window manager (handle) for the icon assigned to the image on

line 8, and then line 9 adds the icon to the window.

10. ax = pltaxes(xlim=(0,5), ylim=(0,1))

11. line, = ax.plot([],[]), lw=4)

12. def init():

13. line.set_data([],[])

14. return line

Line 10 sets up the x and y axis and sets their limits

Line 11 creates an empty line object (filled later), and sets the line width

Line 12 defines the init function that will be passed to FuncAnimation

Line 13 sets the data for the line (lists of x and y values)

Line 14 returns the line

15. def animate(i):

16. x = np.linespace(0, 5, 1000)

17. plt.xlabel(‘Milliseconds’)

18. plt.ylabel(‘MHz’)

19. plt.title(‘Carrier Wave Over Time’)

20. plt.yticks([0,1,2,34], [’94.0’, ’94.2’, ’94.4’, ’94.5’, ’94.6’])

21. y = ((np.sin(2*np.pi * (x-0.01*i)) * 0.1) +2)

22. line.set_data(x,y)

23. return line

127

Chapter 16 File Dialogs, HTML, and Animation

Line 15 defines the animate function which is passed to FuncAnimation

Line 16 sets up the numpy line space start point, end point, and number of

samples to generate

Line 17 and 18 assign the x and y axis labels

Line 19 sets the title for the chart

Line 20 establishes the number of y tick marks and their labels

Line 21 is the equation for generating the wave

Line 22 assigns the x and y values to the line lists

Line 23 returns the updated line

24. anim = animation.FuncAnimation(fig, animate, init_func=init,\

25. frames = 200, interval=20, blit=False)

26.

27. plt.show()

Lines 24 and 25 are the call to animate passing the figure object, the animate

function (callable at each frame), the init function (draws a clear frame), the

number of frames, the interval or delay between frames in milliseconds, and no

blitting.

Ex. 16.4 Animated Carrier Wave

128

Chapter 16 File Dialogs, HTML, and Animation

Complete code for Ex. 16.4

import numpy as np

from matplotlib import pyplot as plt

from matplotlib import animation

from tkinter import PhotoImage

fig = plt.figure()

fig.canvas.set_window_title('Carrier Wave Analysis')

thismanager = plt.get_current_fig_manager()

img = PhotoImage(file='Radio.gif')

thismanager.window.tk.call('wm', 'iconphoto', thismanager.window._w, img)

ax = plt.axes(xlim=(0,5), ylim=(0,1))

line, = ax.plot([],[],lw=4)

def init():

 line.set_data([],[])

 return line

def animate(i):

 x = np.linspace(0,5,1000)

 plt.xlabel('Miliseconds')

 plt.ylabel('MHz')

 plt.title('Carrier Wave Over Time')

 plt.yticks([0,1,2,3,4], ['94.0', '94.2', '94.4', '94.5', '94.6'])

 y = ((np.sin(2* np.pi * (x-0.01*i)) * 0.1) + 2)

 line.set_data(x,y)

 return line

anim = animation.FuncAnimation(fig, animate, init_func=init,

 frames=200, interval=20, blit=False)

plt.show()

129

Chapter 16 File Dialogs, HTML, and Animation

'Blitting' (Bit Block Transfer) is an old technique in computer graphics. The idea

is to take an existing image and then 'blit' another on top of it instead of erasing

each pixel and redrawing them. By managing a saved 'clean' bitmap, the

program only re-draws the few areas that are changing at each frame. This often

saves significant amounts of time redrawing. To use blitting, set blit=True in the

arguments to FuncAnimation.

Sound

On Windows©, winsound provides standard sound playing capability and the

Windows sound files. For other operating systems, there are a variety of modules

that can be installed with the PIP installer.

Ex. 16.5 – Playing Audio

import winsound

def main():

winsound.PlaySound("SystemExclamation",winsound.SND_FILENAME)

winsound.PlaySound("SystemHand", winsound.MB_OK)

winsound.PlaySound('my_own.wav', winsound.SND_FILENAME)

main()

Other sound modules available for Python include playsound, pygame,

pyMedia, pyglet, and more. Any of these can be installed with PIP to import and

use for playing MP3 files and most audio formats.

130

Chapter 16 File Dialogs, HTML, and Animation

131

Appendix A

Appendix A - Getting Python with IDLE

Obtaining Python with IDLE

• Python and IDLE can run on any machine, and can be installed and runs fine on

a flash drive

• The IDLE IDE is installed with Python 3.7.1 and above

• The tkinter module is installed with Python

• Python is available from Python.org https://www.python.org

Browse to the Python web site shown here and select “Downloads”.

In the Downloads window shown below, select the “Download Python 3.7.4” button

or select as appropriate for your computer. A later version may be available.

Select the folder where to install the program and download or save it to a folder.

132

Appendix A

Appendix A - Getting Python with IDLE

Python and IDLE run fine on a flash drive and can be installed there if you prefer.

The folders and files shown below are installed with Python.

Note: The IDLE executable is not at this level. It is in Lib/idlelib and is called idle.bat.

Double clicking idle.bat will launch the IDE. To simplify launching IDLE each time,

creating a shortcut is recommended. In some cases a desktop shortcut may have

been installed when the program was installed.

IDLE is launched by double-clicking: Lib\idlelib\idle.bat

Documentation can be found at:

https://docs.python.org/2/library/idle.html

https://docs.python.org/2/library/idle.html

133

Appendix B

Appendix B - The PIP Installer

The PIP Module Installer

PIP is already installed if you are using Python 3.4 or above. PIP is a command line

program (no GUI), and is run typically from a command prompt. To confirm that PIP is

installed, open the Python folder and then Scripts folder which will include PIP files.

PIP can also be verified by opening the Python folder and then the Lib folder, and then

the site-packages folder. The PIP installer is run from the Scripts directory. To test for

PIP and the proper directory, open a command prompt and type the path to

python\Scripts and then pip3 then minus minus version. In this example, Python 3.9.0 is

installed (which comes with pip3). The directory is Python\Python_3_9_0.

C:\Python\Python_3_9_\Scripts\pip3 - - version

134

Appendix B

Appendix B - The PIP Installer

It is important to use complete paths when using PIP, and to be careful of typographical

errors. The example below is installing the matplotlib module which is a Python plotting

tool. It installs the module using PIP which is being run from the following subdirectory:

 E:\Python\Scripts

The first command shown below omitted the letters “on” from “Python” in the

command. The second successfully used the installer.

If running from a command console is an issue, PIP can be run through the Python

interpreter. The complete User Guide for PIP is available at:

 https://pip.pypa.io/en/stable/user_guide/

https://pip.pypa.io/en/stable/user_guide/

135

Appendix C

Appendix C - Data Analysis Project

The Data Analysis Project

This project develops an interactive Python GUI program that extracts various weather data elements

from a file for correlation, display, and plotting.

When the program launches, a login/create account window will open first. When the create account

button is clicked, a separate window will be created from a separate GUI class in a separate module. The

user must create a unique username and a password that is nine (9) characters or more, with at least on

digit, uppercase and lowercase letter. The program will continue to show error messages and prompt for

a password until a valid password is created. The valid account information will be stored for retrieval for

future login. When an account has been created and the login button is clicked, the main window can

change to accept the user name and password or another window can be used. The user name and

password will be checked against existing accounts to ensure that the account exists.

When a valid login has occurred, the main window will change to allow selection of the data to display.

The user will be able to select one of four (4) different data sets from a National Weather Service file

(provided), and select a time interval for data extraction. The data sets to choose from are:

 Barometric pressure and temperature

 Barometric pressure and wind speed

 Barometric pressure and sky cover

 Temperature and dew point

The time interval for data extraction can be any whole number of years’ worth of data from 2010 through

2018. Once a data set and time window have been selected, a display window will open with column

headers and the data vertically in columns with the capability for the user to plot the data. Plotting

functionality should be disabled until the user has selected the data to be plotted.

The data in the file is columnar with no delimiter and is accompanied by data dictionary. A sample of the

data format is shown here.

A Design Document is required and will be submitted for odd numbered Milestones, presented as a part

of project demonstrations for even Milestones, and submitted as a final submission. The Design

Document will include step-by-step implementation screen captures, descriptions, and explanations of

functionality in the program (see the sample file), followed by the program code.

Presentations are required during the semester and a final Presentation/demonstration. The Design

document will be presented first during each presentation including the program code, and then the

program operation will be demonstrated.

136

Appendix C

Appendix C - Data Analysis Project

The screen captures in this document are for reference only. The design and interface of your

program do not have to mirror the examples in this document in terms of appearance and

controls used, but must handle the operations.

Assignment

Get Python with IDLE and create a working program using the “Getting Started in Python” exercise. The

latest IDLE comes with Python 3.9.0 from python.org. Determine the installation location. IDLE will run

fine on a flash drive. Create and run a “Hello World”-like program. Create a design/development

document that you will update when you work the project. This will be reviewed at the Milestones as will

the code. See the example design documentation.

Project Milestone #1

Begin the Design/development documentation with a general description of the project and include

screen captures and explanations of operation for the milestone. Create the main GUI loop for the

program and the create account interface using buttons, and entry controls.

Design and implement the Account Creation GUI using a class in a separate file that is launched when the

“Create Account” button is clicked. Design and develop the functionality for retrieving the username and

validating the password. Right-align the input text and create an error dialog that echoes the password.

Validate the password for length (9 characters or more), an uppercase and lowercase letter, and a digit.

The window must contain instructions and operating “Cancel” and “Create Account” buttons.

137

Appendix C

Appendix C - Data Analysis Project

When the “OK” button is clicked, the previous password should be cleared.

password_entry.delete(0,END) # clear the text

Note: The “Create Account” button should create an instance of the Account Creation class.

Continue the username and password algorithm by saving the data and storing it in a file for retrieval by

the login function. The password stored should be encrypted. This can be done later in the project. When

account creation is successful, the “Create Account” button on the main GUI should be disabled since an

account was just created.

STATUS: At this point, there should be a main loop for the program with the main interface. There should
be a separate file with a class that handles the creation of a user account that contains a function for
validating the password and storing the user name and valid password. There should be a function in
main that creates an instance of the password creation object and enables/disables buttons as
appropriate.

Design/development documentation – update the document to include screen captures of the

functionality with explanations. Include all program code at the end of the document.

Project Milestone #2

When account creation is successful, the Account Creation dialog should be destroyed or change to allow

the user to login. Implement the login functionality by verifying that the account exists. The “Login”

button should be disabled after it is clicked. The entry control for the password will use the <ENTER> key

to accept the password.

138

Appendix C

Appendix C - Data Analysis Project

Hint: The call to the login function may not be able to be handled directly through the “command=”
option of the button. A call to a function within the main GUI (outside the main loop) may need to be
called which then calls the login function in the separate module.

Once a login has been successful, the main window should change to an interface for making a selection

for the data access. This can be done by modifying the window or creating a new one.

Hint: To change the GUI, use the config and hide attributes, and the destroy function as appropriate to

modify the window.

Example: self.select_button.destroy() # destroy the select button

Add the code to the login function to accept the user name and password when the <Enter> key is
pressed by binding the entry control to a function call that tests for a match with the stored account
information by calling a “verify” function. The entry control should accept input right aligned in the text
box. If data entered and data password don’t match, red text should alert the user and the text box
should be cleared - entry.delete(0, END).

Note: The main window can morph (change) when the login is successful. There is no reason to create
another dialog for this functionality.

Design the main GUI including thecontrols (functionality of the controls is not required at this point).

Consider how the program will handle various situations, and how will the user interact with the program.

In preparation for demonstration of program operation, clean up the appearance of the program

including the various displays and window handling. Windows should appear centered on the desktop,

and not hide one another incorrectly. Controls should be aligned or centered with text explaining their

functionality.

Design/development documentation: Update the design document screen captures and explanations,

and include the updated code at the back of the document.

139

Appendix C

Appendix C - Data Analysis Project

Project Milestone #3

Complete the design for the main interface and implement the functionality for user selection of the data
sets and time interval. Begin the data handling algorithm to read the file and extract the correct values.
Consider creating a small file of data from the data set for testing. Determine the container type that will
be used to store the data in the program, and how it will be extracted.

For data selection, radio buttons, option lists, and drop down menus are mutually exclusive and are
possible solutions. The user should not type any information.

Design/development documentation: Update the design document screen captures, explanations, and

paste the updated code in the back of the document.

Project Milestone #4

Design the algorithm for extracting one set of data, and implement the window and output for displaying
the columned data. Testing this functionality using a small data set instead of handling the entire file is
recommended.

Since the data consists of multiple samplings per day, consider how the user would prefer this to be
handled. Also, consider how the plot functionality will be designed which may have an impact on the
design at this point.

 Project Milestone #5

Design and implement the algorithms for selecting and displaying the other data sets and time intervals.
Consider how this can be designed to accommodate any selection. There are a variety of ways to design
this functionality.

Begin to consider the design for plotting the data selection.

Design/development documentation: Update the design document explanations and screen captures,

and include the updated code at the back of the document.

140

Appendix C

Appendix C - Data Analysis Project

Project Milestone #6

Implement the plotting functionality and display. Test the program for all data sets and time intervals.

Consider how the plot should be presented and how the axis should be labeled.

Final preparation: Test all areas of the program in preparation for demonstrating the working program.
Update the design documentation with screen captures and updated code at the end, and prepare the
final documentation package for submission.

Final Presentation/Submission

Present the Design Document with program code, and demonstrate the running program

operation. Submit the Design document including all code at the end as a Word file or pdf.

141

Appendix D

Appendix D – Resource Links

Links to Helpful Information

Matplotlib:

https://matplotlib.org/

Matplotlib Tutorial:

https://matplotlib.org/3.1.1/tutorials/introductory/pyplot.html

PEP 8 Style Guide for Python Code:

 https://www.python.org/dev/peps/pep-0008/

Python Organization: Downloads, Documentation, etc.

 https://www.python.org/

Python Tutorial:

https://docs.python.org/3/tutorial/index.html

https://matplotlib.org/
https://matplotlib.org/3.1.1/tutorials/introductory/pyplot.html
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/
https://docs.python.org/3/tutorial/index.html

142

Appendix D

Appendix D – Resource Links

1

Index

A

acos(x) function, 13

active (state) 43

Agile Development 3

Addition (+) operator

 defined 12

 concatenation 74

and operator 23

 short circuit evaluation 24

Animation 125

appending data

 files (mode) 49

append function, 77

Arguments, passing 28

asin(x) function, 13

Assignment operator 10

atan(x) function, 13

axis labels 118

B

bar chart 114

bool data type 25

Boolean

 expressions 23

 logic 24

 return values 31

Browser, launch 124

Buttons

 create 44

 groups 92

 widget 36

 options 43

 text 44

C

Calendar 99

callback function 44

calling functions 27

Canvas component 113

case-sensitive 11

Centering windows 68

characters 73

 comparing 24

 copying 74

 escape 11

 finding in strings 75

 indexing 74

 newline 52

 tab 52

 stripping 52

Charts

 bar 114

 flow 6

 line 116

 line example 117

 pie 116

checkbutton control 36

Classes, example 103

Comments 9

config 80

Concatenation 74

 lists 77

Conditional statements 23

Controlled loops 25

Copying

 characters 73

Count-controlled loops 26

2

Index

D

data

 appending to files 49

 file design 69

 reading from files 49

 handling 69

 writing to files 49

Data dictionary 69

data types

 bool 25

 int 11

 float 11

 str 11

Decision structures 23

def (define) 27

degrees() function, 13

destroy() 80

Development

 Agile 3

 cycle 4

 methodologies 4

 process 3

Dialog boxes

 error 21

 designed 59

 Information box 66

 File Open 122

 File, Save As 123

 Message box 66

 show (error, info, warning) 66

disabled (state) 43

Division 12

Drop-down menus 87

E

e variable 13

else clause 23

else with try/except 57

endswith method 76

Entry control

 Text entry 65

 focus 65

 destroy() 80

 example 65

Errors

 cost by phase 5

 dialogs 66

 IndexError 74

 IOError 57

 object 58

 Traceback 20

 SyntaxError 21

 TypeError 52

 ValueError 57

Escape characters 11

Event handler

 main loop 35

Exceptions 56

 handling 57

exponentiation 12

 example 13

F

File modes 49

File objects

 close method 50

3

Index

 opening 49

 read 49

 readline, function 51

 read numeric data 52

 writing numeric data 53

 writing text 50

 writeline 78

File dialog 121

File “Save As” dialog 123

finally clause 57

find method 76

float data type 11

float() function 12

floating point division 12

Flowchart 6

font

 label 37

 button 43

 button example 44

 display output 114

 entry control 65

 style 38

for loop 25

for in loop 73

format specifiers 113

Frame container 47

FuncAnimation 125

Functions 27

 callback 44

 calling 28

 defined 15

 keyword arguments 30

 main(), function 31

 passing argument to 28

 returning values 30

G

get method 90

GUI

 design 33

 example 38

 positioning controls 40

 programming 38

 sketch 37

Graph 118

H

HTML 123

hypot() function 13

I

IDLE

 obtaining 15

 shell 16

if-elif-else 23

import

 example 38

 statements 45

 wildcard 45

Immutable 74

In operator 75

indentation 23

IndexError 74

indexes

 characters 74

 lists and tuples 76

 negative 73

4

Index

 out of range 74

 strings 73

Info dialog box 66

Initializer method 38

int() 12

IOError exception 57

IPO document 3

isalnum() method 76

isalpha() method 76

isdigit() method 76

islower() method 76

isupper() method 76

J

Java 2

K

keyboard input 12

key words 11

keyword arguments 30

L

Label control 36

 example 38

Lambda 93

len function 20

Line graph 117

listbox 36

list() function 78

list to tuple 78

log() function 13

Logical operators 24

Loops 25

lower() method 52

lstrip() method 52

M

Main function 28

Main loop 37

Mathematical operators 12

matplotlib 114

 animation 125

 module 115

 plotting 116

max function 77

menu button 36

Menus 87

Methods, defined 15

Mixed-type expressions 13

min function 77

minsize() 38

Modularization 61

Modules 115

Modulus (%) operator 12

Multiplication (*) operator 12

Mutable 76

N

Negative indexes 73

Newline (\n) character

 adding 78

 defined 52

 removing 52

5

Index

Not in operator 75

not operator 24

Numbers

 floating point 11

 formatting 10

 integer 12

 random 14

Numeric Lists 76

numpy module 125

O

Objects 32

 exception 58

 file 50

 StringVar 81

Object Oriented 36

open function 49

Open file dialog 121

Operators

 IN and NOT IN 76

 logical 24

 mathematical 12

 precedence of 13

 relational 24

Option Lists control 84

Output 2

 displaying 9

 file 53

 window 111

P

Parameter 30

Passing arguments 29

pi variable 13

pie chart 116

pip installer 35

plot() function 117

Pointers 32

Precedence 13

print function 9

Program design 5

Pseudocode 5

Pyplot 115

Q

Quit button 44

R

radians() function 13

Radio buttons 95

random numbers 14

range function 26

Read, file 49

Relational operators 22

remove characters 52

remove method 77

replace method 76

resizable 47

return statements 33

reverse method 77

rounding 13

rstrip() method 52

S

“Save As” dialog 123

6

Index

Saving programs 20

search method 76

seeds, random number 14

set method 81

Showerror 66

Showinfo() 66

Showwarning() 66

sin() 13

Slicing 75

sort() function 77

split method 51

sqrt 13

state 43

startswith method 73

str type 11

strings 71

String lists 77

String testing 76

StringVar object 81

strip() method 52

Subtraction (-) operator 12

sys.exit() 68

T

tan() function 13

Tearoff 88

Text on canvas 113

Text files 49

tick marks 118

Time 97

tkinter module 36

tkinter main loop 37

trace 91

Traceback 20

Truncation 12

try/except 56

Tuple 78

U

UML Unified Modeling Language 3

upper() method 52

User interface 2

V

Variables 11

W

Web browser, launch 124

Weight 47

While loops 25

Wildcard import 45

Window

 border title 38

 centering 68

 chart 117

 destroy 80

 topmost 68

 hide 121

 IDLE edit 19

 interaction 103

 login 66

 menu 87

 minsize() 38

 multiple 59

 parent 105

writelines method 78

7

Index

X

x axis 117

x cords 117

XML 115

Y

y axis 117

y cords 117

Z

Zooming, plots 117

